Advertisement
Research Article| Volume 142, 109189, May 2023

Download started.

Ok

Bumetanide potentiates the anti-seizure and disease-modifying effects of midazolam in a noninvasive rat model of term birth asphyxia

  • Author Footnotes
    1 Present address: MSD Animal Health Innovation GmbH, Schwabenheim an der Selz, Germany.
    Björn Welzel
    Footnotes
    1 Present address: MSD Animal Health Innovation GmbH, Schwabenheim an der Selz, Germany.
    Affiliations
    Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany

    Center for Systems Neuroscience Hannover, Germany
    Search for articles by this author
  • Author Footnotes
    2 Present address: Department of Neurosurgery, Hannover Medical School, Germany.
    Marie Johne
    Footnotes
    2 Present address: Department of Neurosurgery, Hannover Medical School, Germany.
    Affiliations
    Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany

    Center for Systems Neuroscience Hannover, Germany
    Search for articles by this author
  • Wolfgang Löscher
    Correspondence
    Corresponding author at: Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Bünteweg 17, D-30559 Hannover, Germany.
    Affiliations
    Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany

    Center for Systems Neuroscience Hannover, Germany
    Search for articles by this author
  • Author Footnotes
    1 Present address: MSD Animal Health Innovation GmbH, Schwabenheim an der Selz, Germany.
    2 Present address: Department of Neurosurgery, Hannover Medical School, Germany.

      Highlights

      • Birth asphyxia often causes hypoxic-ischemic encephalopathy, and neonatal seizures, and later-life adverse outcome.
      • In most cases, current therapies cannot prevent this outcome.
      • A rat model of birth asphyxia, neonatal seizures, and later-life adverse outcomes can be used to explore novel therapies.
      • The loop diuretic bumetanide enhances the anti-seizure and disease-modifying effects of midazolam in this model.
      • The mechanisms to explain that bumetanide potentiates midazolam but not phenobarbital remain to be determined.

      Abstract

      Birth asphyxia and the resulting hypoxic-ischemic encephalopathy (HIE) are highly associated with perinatal and neonatal death, neonatal seizures, and an adverse later-life outcome. Currently used drugs, including phenobarbital and midazolam, have limited efficacy to suppress neonatal seizures. There is a medical need to develop new therapies that not only suppress neonatal seizures but also prevent later-life consequences. We have previously shown that the loop diuretic bumetanide does not potentiate the effects of phenobarbital in a rat model of birth asphyxia. Here we compared the effects of bumetanide (0.3 or 10 mg/kg i.p.), midazolam (1 mg/kg i.p.), and a combination of bumetanide and midazolam on neonatal seizures and later-life outcomes in this model. While bumetanide at either dose was ineffective when administered alone, the higher dose of bumetanide markedly potentiated midazolam’s effect on neonatal seizures. Median bumetanide brain levels (0.47–0.53 µM) obtained with the higher dose were in the range known to inhibit the Na-K-Cl-cotransporter NKCC1 but it remains to be determined whether brain NKCC1 inhibition was underlying the potentiation of midazolam. When behavioral and cognitive alterations were examined over three months after asphyxia, treatment with the bumetanide/midazolam combination, but not with bumetanide or midazolam alone, prevented impairment of learning and memory. Furthermore, the combination prevented the loss of neurons in the dentate hilus and aberrant mossy fiber sprouting in the CA3a area of the hippocampus. The molecular mechanisms that explain that bumetanide potentiates midazolam but not phenobarbital in the rat model of birth asphyxia remain to be determined.

      Keywords

      Abbreviations:

      CAI (carbonic anhydrase inhibitor), HIE (hypoxic-ischemic encephalopathy), NKCC (Na-K-Cl-cotransporter), P11 (postnatal day 11), RAWM (radial-arm water maze)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Epilepsy & Behavior
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ahearne C.E.
        • Boylan G.B.
        • Murray D.M.
        Short and long term prognosis in perinatal asphyxia: An update.
        World J Clin Pediatr. 2016; 5: 67-74
        • Ala-Kurikka T.
        • Pospelov A.S.
        • Summanen M.
        • Alafuzoff A.
        • Kurki S.
        • Voipio J.
        • et al.
        A physiologically-validated rat model of term birth asphyxia with seizure generation after, not during, brain hypoxia.
        Epilepsia. 2021; 62: 908-919
        • Alamed J.
        • Wilcock D.M.
        • Diamond D.M.
        • Gordon M.N.
        • Morgan D.
        Two-day radial-arm water maze learning and memory task; robust resolution of amyloid-related memory deficits in transgenic mice.
        Nat Protoc. 2006; 1: 1671-1679
        • Bird C.M.
        • Burgess N.
        The hippocampus and memory: insights from spatial processing.
        Nat Rev Neurosci. 2008; 9: 182-194
        • Björkman S.T.
        • Miller S.M.
        • Rose S.E.
        • Burke C.
        • Colditz P.B.
        Seizures are associated with brain injury severity in a neonatal model of hypoxia-ischemia.
        Neuroscience. 2010; 166: 157-167
        • Boissier J.-R.
        • Tardy J.
        • Diverres J.-C.
        Une nouvelle methode simple pour explorer l'action 'tranquillisante': le test de la cheminee.
        Med Exp. 1960; 3: 81-84
        • Brandt C.
        • Nozadze M.
        • Heuchert N.
        • Rattka M.
        • Löscher W.
        Disease-modifying effects of phenobarbital and the NKCC1 inhibitor bumetanide in the pilocarpine model of temporal lobe epilepsy.
        J Neurosci. 2010; 30: 8602-8612
        • Brandt C.
        • Seja P.
        • Töllner K.
        • Römermann K.
        • Hampel P.
        • Kalesse M.
        • et al.
        Bumepamine, a brain-permeant benzylamine derivative of bumetanide, does not inhibit NKCC1 but is more potent to enhance phenobarbital's anti-seizure efficacy.
        Neuropharmacology. 2018; 143: 186-204
        • Cavarsan C.F.
        • Malheiros J.
        • Hamani C.
        • Najm I.
        • Covolan L.
        Is Mossy Fiber Sprouting a Potential Therapeutic Target for Epilepsy?.
        Front Neurol. 2018; 9: 1023
        • Chapman K.E.
        • Raol Y.H.
        • Brooks-Kayal A.
        Neonatal seizures: controversies and challenges in translating new therapies from the lab to the isolette.
        Eur J Neurosci. 2012; 35: 1857-1865
        • Cleary R.T.
        • Sun H.
        • Huynh T.
        • Manning S.M.
        • Li Y.
        • Rotenberg A.
        • et al.
        Bumetanide enhances phenobarbital efficacy in a rat model of hypoxic neonatal seizures.
        PLoS One. 2013; 8: e57148
        • Crawley J.N.
        Exploratory behavior models of anxiety in mice.
        Neurosci Biobehav Rev. 1985; 9: 37-44
        • Cremer J.E.
        • Seville M.P.
        Regional brain blood flow, blood volume, and haematocrit values in the adult rat.
        J Cereb Blood Flow Metab. 1983; 3: 254-256
        • Da Pozzo E.
        • Giacomelli C.
        • Barresi E.
        • Costa B.
        • Taliani S.
        • Passetti F.S.
        • et al.
        Targeting the 18-kDa translocator protein: recent perspectives for neuroprotection.
        Biochem Soc Trans. 2015; 43: 559-565
        • Davidson J.O.
        • Bennet L.
        • Gunn A.J.
        Evaluating anti-epileptic drugs in the era of therapeutic hypothermia.
        Pediatr Res. 2019; 85: 931-933
        • de Haan M.
        • Wyatt J.S.
        • Roth S.
        • Vargha-Khadem F.
        • Gadian D.
        • Mishkin M.
        Brain and cognitive-behavioural development after asphyxia at term birth.
        Dev Sci. 2006; 9: 350-358
        • Dhir A.
        • Rogawski M.A.
        Role of neurosteroids in the anticonvulsant activity of midazolam.
        Br J Pharmacol. 2012; 165: 2684-2691
        • Dimitrova-Shumkovska J.
        • Krstanoski L.
        • Veenman L.
        Diagnostic and Therapeutic Potential of TSPO Studies Regarding Neurodegenerative Diseases, Psychiatric Disorders, Alcohol Use Disorders, Traumatic Brain Injury, and Stroke: An Update.
        Cells. 2020; 9: 870
        • Donovan M.D.
        • Griffin B.T.
        • Kharoshankaya L.
        • Cryan J.F.
        • Boylan G.B.
        Pharmacotherapy for Neonatal Seizures: Current Knowledge and Future Perspectives.
        Drugs. 2016; 76: 647-661
        • Dudek F.E.
        • Yasumura T.
        • Rash J.E.
        'Non-synaptic' mechanisms in seizures and epileptogenesis.
        Cell Biol Int. 1998; 22: 793-805
        • Dzhala V.
        • Ben Ari Y.
        • Khazipov R.
        Seizures accelerate anoxia-induced neuronal death in the neonatal rat hippocampus.
        Ann Neurol. 2000; 48: 632-640
        • Dzhala V.I.
        • Talos D.M.
        • Sdrulla D.A.
        • Brumback A.C.
        • Mathews G.C.
        • Benke T.A.
        • et al.
        NKCC1 transporter facilitates seizures in the developing brain.
        Nat Med. 2005; 11: 1205-1213
        • Dzhala V.I.
        • Brumback A.C.
        • Staley K.J.
        Bumetanide enhances phenobarbital efficacy in a neonatal seizure model.
        Ann Neurol. 2008; 63: 222-235
        • Edwards A.D.
        • Brocklehurst P.
        • Gunn A.J.
        • Halliday H.
        • Juszczak E.
        • Levene M.
        • et al.
        Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data.
        BMJ. 2010; 340c363
        • Feng H.
        • Liu Y.
        • Zhang R.
        • Liang Y.
        • Sun L.
        • Lan N.
        • et al.
        TSPO Ligands PK11195 and Midazolam Reduce NLRP3 Inflammasome Activation and Proinflammatory Cytokine Release in BV-2 Cells.
        Front Cell Neurosci. 2020; 14544431
        • Gailus B.
        • Naundorf H.
        • Welzel L.
        • Johne M.
        • Römermann K.
        • Kaila K.
        • et al.
        Long-term outcome in a noninvasive rat model of birth asphyxia with neonatal seizures: Cognitive impairment, anxiety, epilepsy, and structural brain alterations.
        Epilepsia. 2021; 62: 2826-2844
        • Glass H.C.
        • Glidden D.
        • Jeremy R.J.
        • Barkovich A.J.
        • Ferriero D.M.
        • Miller S.P.
        Clinical Neonatal Seizures are Independently Associated with Outcome in Infants at Risk for Hypoxic-Ischemic Brain Injury.
        J Pediatr. 2009; 155: 318-323
        • Glass H.C.
        • Shellhaas R.A.
        • Tsuchida T.N.
        • Chang T.
        • Wusthoff C.J.
        • Chu C.J.
        • et al.
        Seizures in Preterm Neonates: A Multicenter Observational Cohort Study.
        Pediatr Neurol. 2017; 72: 19-24
        • Glass H.C.
        • Shellhaas R.A.
        Acute Symptomatic Seizures in Neonates.
        Semin Pediatr Neurol. 2019; 32100768
        • Glykys J.
        • Duquette E.
        • Rahmati N.
        • Duquette K.
        • Staley K.J.
        Mannitol decreases neocortical epileptiform activity during early brain development via cotransport of chloride and water.
        Neurobiol Dis. 2019; 125: 163-175
        • Haglund M.M.
        • Hochman D.W.
        Furosemide and mannitol suppression of epileptic activity in the human brain.
        J Neurophysiol. 2005; 94: 907-918
        • Hampel P.
        • Römermann K.
        • Gramer M.
        • Löscher W.
        The search for brain-permeant NKCC1 inhibitors for the treatment of seizures: Pharmacokinetic-pharmacodynamic modelling of NKCC1 inhibition by azosemide, torasemide, and bumetanide in mouse brain.
        Epilepsy Behav. 2021; 114107616
        • Hansen T.W.
        • Bratlid D.
        Cerebral blood volumes in young rats with and without in situ saline flushing of cerebral vasculature. Implications for in vivo studies of brain substance uptake.
        Biol Neonate. 1989; 56: 15-21
      1. Heyser CJ. Assessment of developmental milestones in rodents. Curr Protoc Neurosci. Chapter 8, Unit 8.18; 2004.

        • Hochman D.W.
        • Baraban S.C.
        • Owens J.W.
        • Schwartzkroin P.A.
        Dissociation of synchronization and excitability in furosemide blockade of epileptiform activity.
        Science. 1995; 270: 99-102
        • Holmes G.L.
        The long-term effects of neonatal seizures.
        Clin Perinatol. 2009; 36: 901-914
        • Horiguchi Y.
        • Ohta N.
        • Yamamoto S.
        • Koide M.
        • Fujino Y.
        Midazolam suppresses the lipopolysaccharide-stimulated immune responses of human macrophages via translocator protein signaling.
        Int Immunopharmacol. 2019; 66: 373-382
        • Irwin S.
        Comprehensive observational assessment: Ia. A systematic, quantitative procedure for assessing the behavioral and physiologic state of the mouse.
        Psychopharmacologia. 1968; 13: 222-257
        • Jaremko L.
        • Jaremko M.
        • Giller K.
        • Becker S.
        • Zweckstetter M.
        Structure of the mitochondrial translocator protein in complex with a diagnostic ligand.
        Science. 2014; 343: 1363-1366
        • Johne M.
        • Römermann K.
        • Hampel P.
        • Gailus B.
        • Theilmann W.
        • Ala-Kurikka T.
        • et al.
        Phenobarbital and midazolam suppress neonatal seizures in a noninvasive rat model of birth asphyxia, whereas bumetanide is ineffective.
        Epilepsia. 2021; 62: 920-934
        • Johne M.
        • Käufer C.
        • Römermann K.
        • Gailus B.
        • Gericke B.
        • Löscher W.
        A combination of phenobarbital and the bumetanide derivative bumepamine prevents neonatal seizures and subsequent hippocampal neurodegeneration in a rat model of birth asphyxia.
        Epilepsia. 2021; 62: 1460-1471
        • Kahle K.T.
        • Staley K.J.
        The bumetanide-sensitive Na-K-2Cl cotransporter NKCC1 as a potential target of a novel mechanism-based treatment strategy for neonatal seizures.
        Neurosurg Focus. 2008; 25: 1-8
        • Kaila K.
        • Löscher W.
        Bumetanide for neonatal seizures: No light in the pharmacokinetic/dynamic tunnel.
        Epilepsia. 2022; 63: 1868-1873
        • Kang S.K.
        • Markowitz G.J.
        • Kim S.T.
        • Johnston M.V.
        • Kadam S.D.
        Age- and sex-dependent susceptibility to phenobarbital-resistant neonatal seizures: role of chloride co-transporters.
        Front Cell Neurosci. 2015; 9: 173
        • Kang S.K.
        • Kadam S.D.
        Neonatal Seizures: Impact on Neurodevelopmental Outcomes.
        Front Pediatr. 2015; 3: 101
        • Kharod S.C.
        • Kang S.K.
        • Kadam S.D.
        Off-Label Use of Bumetanide for Brain Disorders: An Overview.
        Front Neurosci. 2019; 13: 310
        • Kilkenny C.
        • Browne W.J.
        • Cuthill I.C.
        • Emerson M.
        • Altman D.G.
        Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research.
        PLoS Biol. 2010; 8: e1000412
        • Klee R.
        • Töllner K.
        • Rankovic V.
        • Römermann K.
        • Schidlitzki A.
        • Bankstahl M.
        • et al.
        Network pharmacology for antiepileptogenesis: tolerability of multitargeted drug combinations in nonepileptic vs. post-status epilepticus mice.
        Epilepsy Res. 2015; 118: 34-48
        • Klein S.
        • Bankstahl M.
        • Gramer M.
        • Hausknecht M.
        • Löscher W.
        Low doses of ethanol markedly potentiate the anti-seizure effect of diazepam in a mouse model of difficult-to-treat focal seizures.
        Epilepsy Res. 2014; 108: 1719-1727
        • Koyama Y.
        • Andoh T.
        • Kamiya Y.
        • Morita S.
        • Miyazaki T.
        • Uchimoto K.
        • et al.
        Bumetanide, an inhibitor of cation-chloride cotransporter isoform 1, inhibits Î3-aminobutyric acidergic excitatory actions and enhances sedative actions of midazolam in neonatal rats.
        Anesthesiology. 2013; 119: 1096-1108
        • Lau C.E.
        • Ma F.
        • Wang Y.
        • Smith C.
        Pharmacokinetics and bioavailability of midazolam after intravenous, subcutaneous, intraperitoneal and oral administration under a chronic food-limited regimen: relating DRL performance to pharmacokinetics.
        Psychopharmacology. 1996; 126: 241-248
      2. Lehmann EL. Nonparametrics: Statistical Methods Based on Ranks. Heidelberg: Springer; 2006.

        • Lippman-Bell J.J.
        • Rakhade S.N.
        • Klein P.M.
        • Obeid M.
        • Jackson M.C.
        • Joseph A.
        • et al.
        AMPA receptor antagonist NBQX attenuates later-life epileptic seizures and autistic-like social deficits following neonatal seizures.
        Epilepsia. 2013; 54: 1922-1932
        • Löscher W.
        • Nolting B.
        The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. IV. Protective indices.
        Epilepsy Res. 1991; 9: 1-10
        • Löscher W.
        • Rogawski M.A.
        How theories evolved concerning the mechanism of action of barbiturates.
        Epilepsia. 2012; 53: 12-25
        • Löscher W.
        • Kaila K.
        Reply to the commentary by Ben-Ari and Delpire: Bumetanide and neonatal seizures: Fiction versus reality.
        Epilepsia. 2021; 62: 941-946
        • Löscher W.
        • Klein P.
        The pharmacology and clinical efficacy of antiseizure medications: From bromide salts to cenobamate and beyond.
        CNS Drugs. 2021; 35: 935-963
        • Löscher W.
        • Kaila K.
        CNS pharmacology of NKCC1 inhibitors.
        Neuropharmacology. 2022; 205108910
        • McBride M.C.
        • Laroia N.
        • Guillet R.
        Electrographic seizures in neonates correlate with poor neurodevelopmental outcome.
        Neurology. 2000; 55: 506-513
        • Millar L.J.
        • Shi L.
        • Hoerder-Suabedissen A.
        • Molnár Z.
        Neonatal Hypoxia Ischaemia: Mechanisms, Models, and Therapeutic Challenges.
        Front Cell Neurosci. 2017; 11: 78
        • Miller S.P.
        • Weiss J.
        • Barnwell A.
        • Ferriero D.M.
        • Latal-Hajnal B.
        • Ferrer-Rogers A.
        • et al.
        Seizure-associated brain injury in term newborns with perinatal asphyxia.
        Neurology. 2002; 58: 542-548
        • Moshiro R.
        • Mdoe P.
        • Perlman J.M.
        A Global View of Neonatal Asphyxia and Resuscitation.
        Front Pediatr. 2019; 7: 489
        • Olsen U.B.
        The pharmacology of bumetanide.
        Acta Pharmacol. Toxicol. (Copenh). 1977; 41: 1-29
        • Painter M.J.
        • Scher M.S.
        • Stein A.D.
        • Armatti S.
        • Wang Z.
        • Gardiner J.C.
        • et al.
        Phenobarbital compared with phenytoin for the treatment of neonatal seizures.
        N Engl J Med. 1999; 341: 485-489
        • Papadopoulos V.
        • Baraldi M.
        • Guilarte T.R.
        • Knudsen T.B.
        • Lacapère J.J.
        • Lindemann P.
        • et al.
        Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function.
        Trends Pharmacol Sci. 2006; 27: 402-409
        • Pellow S.
        • Chopin P.
        • File S.E.
        • Briley M.
        Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat.
        J Neurosci Methods. 1985; 14: 149-167
        • Pospelov A.S.
        • Puskarjov M.
        • Kaila K.
        • Voipio J.
        Endogenous bain-sparing responses in brain pH and PO2 in a rodent model of birth asphyxia.
        Acta Physiol. 2020; 229: e13467
        • Pospelov A.S.
        • Ala-Kurikka T.
        • Kurki S.
        • Voipio J.
        • Kaila K.
        Carbonic anhydrase inhibitors suppress seizures in a rat model of birth asphyxia.
        Epilepsia. 2021; 62: 1971-1984
        • Pressler R.M.
        • Boylan G.B.
        • Marlow N.
        • Blennow M.
        • Chiron C.
        • Cross J.H.
        • et al.
        Bumetanide for the treatment of seizures in newborn babies with hypoxic ischaemic encephalopathy (NEMO): an open-label, dose finding, and feasibility phase 1/2 trial.
        Lancet Neurol. 2015; 14: 469-477
        • Pressler R.M.
        • Lagae L.
        Why we urgently need improved seizure and epilepsy therapies for children and neonates.
        Neuropharmacology. 2020; 170107854
        • Pressler R.M.
        • Cilio M.R.
        • Mizrahi E.M.
        • Moshé S.L.
        • Nunes M.L.
        • Plouin P.
        • et al.
        The ILAE classification of seizures and the epilepsies: Modification for seizures in the neonate. Position paper by the ILAE Task Force on Neonatal Seizures.
        Epilepsia. 2021; 62: 615-628
        • Puskarjov M.
        • Kahle K.T.
        • Ruusuvuori E.
        • Kaila K.
        Pharmacotherapeutic targeting of cation-chloride cotransporters in neonatal seizures.
        Epilepsia. 2014; 55: 806-818
        • Qiu Z.K.
        • Li M.S.
        • He J.L.
        • Liu X.
        • Zhang G.H.
        • Lai S.
        • et al.
        Translocator protein mediates the anxiolytic and antidepressant effects of midazolam.
        Pharmacol Biochem Behav. 2015; 139: 77-83
        • Racine R.J.
        Modification of seizure activity by electrical stimulation: II. Motor seizure.
        Electroenceph Clin Neurophysiol. 1972; 32: 281-294
        • Rakhade S.N.
        • Klein P.M.
        • Huynh T.
        • Hilario-Gomez C.
        • Kosaras B.
        • Rotenberg A.
        • et al.
        Development of later life spontaneous seizures in a rodent model of hypoxia-induced neonatal seizures.
        Epilepsia. 2011; 52: 753-765
        • Ramos A.
        Animal models of anxiety: do I need multiple tests?.
        Trends Pharmacol Sci. 2008; 29: 493-498
        • Rogawski M.A.
        • Löscher W.
        • Rho J.M.
        Mechanisms of Action of Antiseizure Drugs and the Ketogenic Diet.
        Cold Spring Harb Perspect Med. 2016; 6a022780
        • Sawant-Pokam P.A.
        • Vail T.J.
        • Metcalf C.S.
        • Maguire J.L.
        • McKean T.O.
        • McKean N.O.
        • et al.
        Preventing neuronal edema increases network excitability after traumatic brain injury.
        J Clin Invest. 2020; 130: 6005-6020
        • Schwartzkroin P.A.
        • Baraban S.C.
        • Hochman D.W.
        Osmolarity, ionic flux, and changes in brain excitability.
        Epilepsy Res. 1998; 32: 275-285
        • Semple B.D.
        • Blomgren K.
        • Gimlin K.
        • Ferriero D.M.
        • Noble-Haeusslein L.J.
        Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species.
        Prog Neurobiol. 2013; 106–107: 1-16
        • Sharpe C.
        • Reiner G.E.
        • Davis S.L.
        • Nespeca M.
        • Gold J.J.
        • Rasmussen M.
        • et al.
        Levetiracetam Versus Phenobarbital for Neonatal Seizures: A Randomized Controlled Trial.
        Pediatrics. 2020; 145: e20193182
        • Shockley R.P.
        • LaManna J.C.
        Determination of rat cerebral cortical blood volume changes by capillary mean transit time analysis during hypoxia, hypercapnia and hyperventilation.
        Brain Res. 1988; 454: 170-178
        • Shukralla A.A.
        • Dolan E.
        • Delanty N.
        Acetazolamide: Old drug, new evidence?.
        Epilepsia Open. 2022; 7: 378-392
        • Sills G.J.
        • Rogawski M.A.
        Mechanisms of Action of Currently Used Antiseizure Drugs.
        Neuropharmacology. 2020; 168107966
        • Soul J.S.
        Acute symptomatic seizures in term neonates: Etiologies and treatments.
        Semin Fetal Neonatal Med. 2018; 23: 183-190
        • Soul J.S.
        • Bergin A.M.
        • Stopp C.
        • Hayes B.
        • Singh A.
        • Fortuno C.R.
        • et al.
        A Pilot Randomized, Controlled, Double-Blind Trial of Bumetanide to Treat Neonatal Seizures.
        Ann Neurol. 2021; 89: 327-340
        • Steimer T.
        Animal models of anxiety disorders in rats and mice: some conceptual issues.
        Dialogues Clin Neurosci. 2011; 13: 495-506
        • Tóth K.
        • Lénárt N.
        • Berki P.
        • Fekete R.
        • Szabadits E.
        • Pósfai B.
        • et al.
        The NKCC1 ion transporter modulates microglial phenotype and inflammatory response to brain injury in a cell-autonomous manner.
        PLoS Biol. 2022; 20: e3001526
        • Töllner K.
        • Brandt C.
        • Töpfer M.
        • Brunhofer G.
        • Erker T.
        • Gabriel M.
        • et al.
        A novel prodrug-based strategy to increase effects of bumetanide in epilepsy.
        Ann Neurol. 2014; 75: 550-562
        • Traynelis S.F.
        • Dingledine R.
        Role of extracellular space in hyperosmotic suppression of potassium-induced electrographic seizures.
        J Neurophysiol. 1989; 61: 927-938
        • Tuk B.
        • van Gool T.
        • Danhof M.
        Mechanism-based pharmacodynamic modeling of the interaction of midazolam, bretazenil, and zolpidem with ethanol.
        J Pharmacokinet Pharmacodyn. 2002; 29: 235-250
        • van Bel F.
        • Groenendaal F.
        Birth asphyxia-induced brain damage: the long road to optimal reduction and prevention!.
        Pediatr Med. 2020; 3: 3
        • van Handel M.
        • Swaab H.
        • De Vries L.S.
        • Jongmans M.J.
        Long-term cognitive and behavioral consequences of neonatal encephalopathy following perinatal asphyxia: a review.
        Eur J Pediatr. 2007; 166: 645-654
        • Vanhatalo S.
        • Hellstrom-Westas L.
        • De Vries L.S.
        Bumetanide for neonatal seizures: Based on evidence or enthusiasm?.
        Epilepsia. 2009; 50: 1292-1293
        • Walf A.A.
        • Frye C.A.
        The use of the elevated plus maze as an assay of anxiety-related behavior in rodents.
        Nat Protoc. 2007; 2: 322-328
        • Wang S.
        • Zhang X.Q.
        • Song C.G.
        • Xiao T.
        • Zhao M.
        • Zhu G.
        • et al.
        In vivo effects of bumetanide at brain concentrations incompatible with NKCC1 inhibition on newborn DGC structure and spontaneous EEG seizures following hypoxia-induced neonatal seizures.
        Neuroscience. 2015; 286: 203-215
        • Welzel B.
        • Schmidt R.
        • Johne M.
        • Löscher W.
        Midazolam prevents the adverse outcome of neonatal asphyxia.
        Ann Neurol. 2023; 93: 226-243
        • Welzel B.
        • Schmidt R.
        • Kirchhoff L.
        • Gramer M.
        • Löscher W.
        The loop diuretic torasemide but not azosemide potentiates the anti-seizure and disease-modifying effects of midazolam in a rat model of birth asphyxia.
        Epilepsy Behav. 2023; 139109057
        • Welzel L.
        • Twele F.
        • Schidlitzki A.
        • Töllner K.
        • Klein P.
        • Löscher W.
        Network pharmacology for antiepileptogenesis: tolerability and neuroprotective effects of novel multitargeted combination treatments in nonepileptic vs. post-status epilepticus in mice.
        Epilepsy Res. 2019; 151: 48-66
      3. WHO. Guidelines on neonatal seizures. Geneva: World Health Organization; 2011.

        • Wirrell E.C.
        • Armstrong E.A.
        • Osman L.D.
        • Yager J.Y.
        Prolonged seizures exacerbate perinatal hypoxic-ischemic brain damage.
        Pediatr Res. 2001; 50: 445-454
        • Zhou K.Q.
        • Davidson J.O.
        • Bennet L.
        • Gunn A.J.
        Combination treatments with therapeutic hypothermia for hypoxic-ischemic neuroprotection.
        Dev Med Child Neurol. 2020; 62: 1131-1137