Advertisement
Review| Volume 142, 109182, May 2023

Download started.

Ok

Neuro-stimulation in focal epilepsy: A systematic review and meta-analysis

      Highlights

      • VNS, RNS, and DBS are used to treat focal epilepsy but their comparative treatment efficacy is unclear.
      • We performed a meta-analysis comparing the efficacy of these modalities in years 1–3 after implantation.
      • We found seizure reduction efficacy of RNS and DBS to be higher than VNS, but this was significant only in year 1.

      Abstract

      Objectives

      Different neurostimulation modalities are available to treat drug-resistant focal epilepsy when surgery is not an option including vagus nerve stimulation (VNS), responsive neurostimulation (RNS), and deep brain stimulation (DBS). Head-to-head comparisons of efficacy do not exist between them nor are likely to be available in the future. We performed a meta-analysis on VNS, RNS, and DBS outcomes to compare seizure reduction efficacy for focal epilepsy.

      Methods

      We systematically reviewed the literature for reported seizure outcomes following implantation with VNS, RNS, and DBS in focal-onset seizures and performed a meta-analysis. Prospective or retrospective clinical studies were included.

      Results

      Sufficient data were available at years one (n = 642, two (n = 480), and three (n = 385) for comparing the three modalities with each other. Seizure reduction for the devices at years one, two, and three respectively were: RNS: 66.3%, 56.0%, 68.4%; DBS- 58.4%, 57.5%, 63.8%; VNS 32.9%, 44.4%, 53.5%. Seizure reduction at year one was greater for RNS (p < 0.01) and DBS (p < 0.01) compared to VNS.

      Conclusions

      Our findings indicate the seizure reduction efficacy of RNS is similar to DBS, and both had greater seizure reductions compared to VNS in the first-year post-implantation, with the differences diminishing with longer-term follow-up.

      Significance

      The results help guide neuromodulation treatment in eligible patients with drug-resistant focal epilepsy.

      Keywords

      Abbreviations:

      DRE (drug-resistant epilepsy), ASM (anti-seizure medications), VNS (vagus nerve stimulation), RNS (responsive neurostimulation), DBS (deep brain stimulation), ANT (anterior nucleus of the thalamus), SR (seizure reduction), SD (standard deviation), IQR (interquartile range), QoL (quality of life)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Epilepsy & Behavior
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fiest K.M.
        • Sauro K.M.
        • Wiebe S.
        • Patten S.B.
        • Kwon C.-S.
        • Dykeman J.
        • et al.
        Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies.
        Neurology. 2017; 88: 296-303https://doi.org/10.1212/WNL.0000000000003509
      1. Zack MM. National and State Estimates of the Numbers of Adults and Children with Active Epilepsy — United States, 2015. MMWR Morb Mortal Wkly Rep 2017;66. https://doi.org/10.15585/mmwr.mm6631a1.

        • Sultana B.
        • Panzini M.-A.
        • Veilleux Carpentier A.
        • Comtois J.
        • Rioux B.
        • Gore G.
        • et al.
        Incidence and Prevalence of Drug-Resistant Epilepsy: A Systematic Review and Meta-analysis.
        Neurology. 2021; 96: 805-817https://doi.org/10.1212/WNL.0000000000011839
        • Saillet S.
        • Langlois M.
        • Feddersen B.
        • Minotti L.
        • Vercueil L.
        • Chabardès S.
        • et al.
        Manipulating the epileptic brain using stimulation: a review of experimental and clinical studies.
        Epileptic Disord Int Epilepsy J Videotape. 2009; 11: 100-112https://doi.org/10.1684/epd.2009.0255
        • Fan J.
        • Shan W.
        • Wu J.
        • Wang Q.
        Research progress of vagus nerve stimulation in the treatment of epilepsy.
        CNS Neurosci Ther. 2019; 25: 1222-1228https://doi.org/10.1111/cns.13209
        • Morrell M.J.
        RNS System in Epilepsy Study Group. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy.
        Neurology. 2011; 77: 1295-1304https://doi.org/10.1212/WNL.0b013e3182302056
        • Fisher R.
        • Salanova V.
        • Witt T.
        • Worth R.
        • Henry T.
        • Gross R.
        • et al.
        Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy.
        Epilepsia. 2010; 51: 899-908https://doi.org/10.1111/j.1528-1167.2010.02536.x
        • Feigen C.M.
        • Eskandar E.N.
        Responsive Thalamic Neurostimulation: A Systematic Review of a Promising Approach for Refractory Epilepsy.
        Front Hum Neurosci. 2022; 16910345https://doi.org/10.3389/fnhum.2022.910345
        • Vetkas A.
        • Fomenko A.
        • Germann J.
        • Sarica C.
        • Iorio-Morin C.
        • Samuel N.
        • et al.
        Deep brain stimulation targets in epilepsy: Systematic review and meta-analysis of anterior and centromedian thalamic nuclei and hippocampus.
        Epilepsia. 2022; 63: 513-524https://doi.org/10.1111/epi.17157
        • Haneef Z.
        • Skrehot H.C.
        Neurostimulation in generalized epilepsy: A systematic review and meta-analysis.
        Epilepsia. 2023; https://doi.org/10.1111/epi.17524
        • Nair D.R.
        • Burgess R.
        • McIntyre C.C.
        • Lüders H.
        Chronic subdural electrodes in the management of epilepsy.
        Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2008; 119: 11-28https://doi.org/10.1016/j.clinph.2007.09.117
        • Salanova V.
        • Sperling M.R.
        • Gross R.E.
        • Irwin C.P.
        • Vollhaber J.A.
        • Giftakis J.E.
        • et al.
        The SANTÉ study at 10 years of follow-up: Effectiveness, safety, and sudden unexpected death in epilepsy.
        Epilepsia. 2021; 62: 1306-1317https://doi.org/10.1111/epi.16895
        • Wong S.
        • Mani R.
        • Danish S.
        Comparison and Selection of Current Implantable Anti-Epileptic Devices.
        Neurotherapeutics. 2019; 16: 369-380https://doi.org/10.1007/s13311-019-00727-2
        • Touma L.
        • Dansereau B.
        • Chan A.Y.
        • Jetté N.
        • Kwon C.-S.
        • Braun K.P.J.
        • et al.
        Neurostimulation in People with Drug-Resistant Epilepsy: Systematic Review and Meta-Analysis from the ILAE Surgical Therapies Commission.
        Epilepsia. 2022; 63: 1314-1329https://doi.org/10.1111/epi.17243
        • Luo D.
        • Wan X.
        • Liu J.
        • Tong T.
        Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range.
        Stat Methods Med Res. 2018; 27: 1785-1805https://doi.org/10.1177/0962280216669183
        • Wan X.
        • Wang W.
        • Liu J.
        • Tong T.
        Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range.
        BMC Med Res Method. 2014; 14: 135https://doi.org/10.1186/1471-2288-14-135
      2. WebPlotDigitizer - Extract data from plots, images, and maps n.d. https://automeris.io/WebPlotDigitizer/ [accessed March 14, 2022].

      3. CEBM (Centre for Evidence-Based Medicine). 2009. Oxford Centre for Evidence-based Medicine—Levels of Evidence (March 2009). https://www.cebm.ox.ac.uk/resources/levels-of-evidence/oxford-centre-for-evidence-based-medicine-levels-of-evidence-march-2009 [accessed March 5, 2023] n.d.

        • Dekkers O.M.
        • Egger M.
        • Altman D.G.
        • Vandenbroucke J.P.
        Distinguishing case series from cohort studies.
        Ann Intern Med. 2012; 156: 37-40https://doi.org/10.7326/0003-4819-156-1-201201030-00006
      4. R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. n.d. URL https://www.R-project.org/.

      5. Schwarzer G, Carpenter JR, Rücker G. Meta-Analysis with R. Cham: Springer International Publishing; 2015. https://doi.org/10.1007/978-3-319-21416-0.

      6. Tufanaru C, Munn Z, Stephenson M, Aromataris E. Fixed or random effects meta-analysis? Common methodological issues in systematic reviews of effectiveness. JBI Evid Implement 2015;13:196–207. https://doi.org/10.1097/XEB.0000000000000065.

        • Kawai K.
        • Tanaka T.
        • Baba H.
        • Bunker M.
        • Ikeda A.
        • Inoue Y.
        • et al.
        Outcome of vagus nerve stimulation for drug-resistant epilepsy: the first three years of a prospective Japanese registry.
        Epileptic Disord Int Epilepsy J Videotape. 2017; 19: 327-338https://doi.org/10.1684/epd.2017.0929
        • Lundgren J.
        • Amark P.
        • Blennow G.
        • Strömblad L.G.
        • Wallstedt L.
        Vagus nerve stimulation in 16 children with refractory epilepsy.
        Epilepsia. 1998; 39: 809-813https://doi.org/10.1111/j.1528-1157.1998.tb01173.x
        • Kuba R.
        • Brázdil M.
        • Novák Z.
        • Chrastina J.
        • Rektor I.
        Effect of vagal nerve stimulation on patients with bitemporal epilepsy.
        Eur J Neurol. 2003; 10: 91-94https://doi.org/10.1046/j.1468-1331.2003.00547.x
        • Spanaki M.V.
        • Allen L.S.
        • Mueller W.M.
        • Morris G.L.
        Vagus nerve stimulation therapy: 5-year or greater outcome at a university-based epilepsy center.
        Seizure. 2004; 13: 587-590https://doi.org/10.1016/j.seizure.2004.01.009
        • Zhu J.
        • Wang X.
        • Xu C.
        • Zhang X.
        • Qiao L.
        • Zhang X.
        • et al.
        Comparison of efficiency between VNS and ANT-DBS therapy in drug-resistant epilepsy: A one year follow up study.
        J Clin Neurosci Off J Neurosurg Soc Australas. 2021; 90: 112-117https://doi.org/10.1016/j.jocn.2021.05.046
        • García-Navarrete E.
        • Torres C.V.
        • Gallego I.
        • Navas M.
        • Pastor J.
        • Sola R.G.
        Long-term results of vagal nerve stimulation for adults with medication-resistant epilepsy who have been on unchanged antiepileptic medication.
        Seizure. 2013; 22: 9-13https://doi.org/10.1016/j.seizure.2012.09.008
        • Razavi B.
        • Rao V.R.
        • Lin C.
        • Bujarski K.A.
        • Patra S.E.
        • Burdette D.E.
        • et al.
        Real-world experience with direct brain-responsive neurostimulation for focal onset seizures.
        Epilepsia. 2020; 61: 1749-1757https://doi.org/10.1111/epi.16593
        • Heck C.N.
        • King-Stephens D.
        • Massey A.D.
        • Nair D.R.
        • Jobst B.C.
        • Barkley G.L.
        • et al.
        Two-year seizure reduction in adults with medically intractable partial onset epilepsy treated with responsive neurostimulation: final results of the RNS System Pivotal trial.
        Epilepsia. 2014; 55: 432-441https://doi.org/10.1111/epi.12534
        • Tran D.K.
        • Paff M.
        • Mnatsakanyan L.
        • Sen-Gupta I.
        • Lin J.J.
        • Hsu F.P.K.
        • et al.
        A Novel Robotic-Assisted Technique to Implant the Responsive Neurostimulation System.
        Oper Neurosurg Hagerstown Md. 2020; 18: 728-735https://doi.org/10.1093/ons/opz226
        • Panov F.
        • Ganaha S.
        • Haskell J.
        • Fields M.
        • La Vega-Talbott M.
        • Wolf S.
        • et al.
        Safety of responsive neurostimulation in pediatric patients with medically refractory epilepsy.
        J Neurosurg Pediatr. 2020; 26: 525-532https://doi.org/10.3171/2020.5.PEDS20118
        • Sisterson N.D.
        • Wozny T.A.
        • Kokkinos V.
        • Bagic A.
        • Urban A.P.
        • Richardson R.M.
        A Rational Approach to Understanding and Evaluating Responsive Neurostimulation.
        Neuroinformatics. 2020; 18: 365-375https://doi.org/10.1007/s12021-019-09446-7
        • Ma B.B.
        • Fields M.C.
        • Knowlton R.C.
        • Chang E.F.
        • Szaflarski J.P.
        • Marcuse L.V.
        • et al.
        Responsive neurostimulation for regional neocortical epilepsy.
        Epilepsia. 2020; 61: 96-106https://doi.org/10.1111/epi.16409
        • Bergey G.K.
        • Morrell M.J.
        • Mizrahi E.M.
        • Goldman A.
        • King-Stephens D.
        • Nair D.
        • et al.
        Long-term treatment with responsive brain stimulation in adults with refractory partial seizures.
        Neurology. 2015; 84: 810-817https://doi.org/10.1212/WNL.0000000000001280
        • Kim S.H.
        • Lim S.C.
        • Kim J.
        • Son B.-C.
        • Lee K.J.
        • Shon Y.-M.
        Long-term follow-up of anterior thalamic deep brain stimulation in epilepsy: A 11-year, single center experience.
        Seizure. 2017; 52: 154-161https://doi.org/10.1016/j.seizure.2017.10.009
        • Tassigny D.
        • Soler-Rico M.
        • Delavallée M.
        • Santos S.F.
        • El Tahry R.
        • Raftopoulos C.
        Anterior thalamic nucleus deep brain stimulation for refractory epilepsy: Preliminary results in our first 5 patients.
        Neurochirurgie. 2020; 66: 252-257https://doi.org/10.1016/j.neuchi.2020.03.001
        • Guo W.
        • Koo B.-B.
        • Kim J.-H.
        • Bhadelia R.A.
        • Seo D.-W.
        • Hong S.B.
        • et al.
        Defining the optimal target for anterior thalamic deep brain stimulation in patients with drug-refractory epilepsy.
        J Neurosurg. 2020; 134: 1054-1063https://doi.org/10.3171/2020.2.JNS193226
        • Parisi V.
        • Lundstrom B.N.
        • Kerezoudis P.
        • Alcala Zermeno J.L.
        • Worrell G.A.
        • Van Gompel J.J.
        Anterior Nucleus of the Thalamus Deep Brain Stimulation with Concomitant Vagus Nerve Stimulation for Drug-Resistant Epilepsy.
        Neurosurgery. 2021; 89: 686-694https://doi.org/10.1093/neuros/nyab253
        • Schaper F.L.W.V.J.
        • Plantinga B.R.
        • Colon A.J.
        • Wagner G.L.
        • Boon P.
        • Blom N.
        • et al.
        Deep Brain Stimulation in Epilepsy: A Role for Modulation of the Mammillothalamic Tract in Seizure Control?.
        Neurosurgery. 2020; 87: 602-610https://doi.org/10.1093/neuros/nyaa141
        • Park H.R.
        • Choi S.J.
        • Joo E.Y.
        • Seo D.-W.
        • Hong S.B.
        • Lee J.-I.
        • et al.
        The Role of Anterior Thalamic Deep Brain Stimulation as an Alternative Therapy in Patients with Previously Failed Vagus Nerve Stimulation for Refractory Epilepsy.
        Stereotact Funct Neurosurg. 2019; 97: 176-182https://doi.org/10.1159/000502344
        • Lee K.J.
        • Shon Y.M.
        • Cho C.B.
        Long-term outcome of anterior thalamic nucleus stimulation for intractable epilepsy.
        Stereotact Funct Neurosurg. 2012; 90: 379-385https://doi.org/10.1159/000339991
        • Krishna V.
        • King N.K.K.
        • Sammartino F.
        • Strauss I.
        • Andrade D.M.
        • Wennberg R.A.
        • et al.
        Anterior Nucleus Deep Brain Stimulation for Refractory Epilepsy: Insights Into Patterns of Seizure Control and Efficacious Target.
        Neurosurgery. 2016; 78: 802-811https://doi.org/10.1227/NEU.0000000000001197
        • Oh Y.-S.
        • Kim H.J.
        • Lee K.J.
        • Kim Y.I.
        • Lim S.-C.
        • Shon Y.-M.
        Cognitive improvement after long-term electrical stimulation of bilateral anterior thalamic nucleus in refractory epilepsy patients.
        Seizure. 2012; 21: 183-187https://doi.org/10.1016/j.seizure.2011.12.003
        • Yang J.C.
        • Bullinger K.L.
        • Dickey A.S.
        • Karakis I.
        • Alwaki A.
        • Cabaniss B.T.
        • et al.
        Anterior nucleus of the thalamus deep brain stimulation vs temporal lobe responsive neurostimulation for temporal lobe epilepsy.
        Epilepsia. 2022; 63: 2290-2300https://doi.org/10.1111/epi.17331
        • Kusyk D.M.
        • Meinert J.
        • Stabingas K.C.
        • Yin Y.
        • Whiting A.C.
        Systematic Review and Meta-analysis of Responsive Neurostimulation in Epilepsy.
        World Neurosurg. 2022; (S1878-8750(22)01048-8)https://doi.org/10.1016/j.wneu.2022.07.147
        • Gooneratne I.K.
        • Green A.L.
        • Dugan P.
        • Sen A.
        • Franzini A.
        • Aziz T.
        • et al.
        Comparing neurostimulation technologies in refractory focal-onset epilepsy.
        J Neurol Neurosurg Psychiatry. 2016; 87: 1174-1182https://doi.org/10.1136/jnnp-2016-313297
        • Vincent T.
        • Li Q.
        • Zhang L.
        • Stokes M.
        • Danielson V.
        • Murphy J.
        • et al.
        Comparison of utilization and cost of healthcare services and pharmacotherapy following implantation of vagus nerve stimulation vs. responsive neurostimulation or deep brain stimulation for the treatment of drug-resistant epilepsy: analyses of a large United States healthcare claims database.
        J Med Econ. 2022; 25: 1218-1230https://doi.org/10.1080/13696998.2022.2148680
        • Karas P.J.
        • Giridharan N.
        • Treiber J.M.
        • Prablek M.A.
        • Khan A.B.
        • Shofty B.
        • et al.
        Accuracy and Workflow Improvements for Responsive Neurostimulation Hippocampal Depth Electrode Placement Using Robotic Stereotaxy.
        Front Neurol. 2020; 11590825https://doi.org/10.3389/fneur.2020.590825
        • Thuberg D.
        • Buentjen L.
        • Holtkamp M.
        • Voges J.
        • Heinze H.-J.
        • Lee H.
        • et al.
        Deep Brain Stimulation for Refractory Focal Epilepsy: Unraveling the Insertional Effect up to Five Months Without Stimulation.
        Neuromodulation J Int Neuromodulation Soc. 2021; 24: 373-379https://doi.org/10.1111/ner.13349
        • Kowalczyk M.A.
        • Omidvarnia A.
        • Abbott D.F.
        • Tailby C.
        • Vaughan D.N.
        • Jackson G.D.
        Clinical benefit of presurgical EEG-fMRI in difficult-to-localize focal epilepsy: A single-institution retrospective review.
        Epilepsia. 2020; 61: 49-60https://doi.org/10.1111/epi.16399
        • Brown M.-G.
        • Sillau S.
        • McDermott D.
        • Ernst L.D.
        • Spencer D.C.
        • Englot D.J.
        • et al.
        Concurrent brain-responsive and vagus nerve stimulation for treatment of drug-resistant focal epilepsy.
        Epilepsy Behav EB. 2022; 129108653https://doi.org/10.1016/j.yebeh.2022.108653
        • Freund B.
        • Grewal S.S.
        • Middlebrooks E.H.
        • Moniz-Garcia D.
        • Feyissa A.M.
        • Tatum W.O.
        Dual-Device Neuromodulation in Epilepsy.
        World Neurosurg. 2022; 161: e596-e601https://doi.org/10.1016/j.wneu.2022.02.057
        • Nair D.R.
        • Laxer K.D.
        • Weber P.B.
        • Murro A.M.
        • Park Y.D.
        • Barkley G.L.
        • et al.
        Nine-year prospective efficacy and safety of brain-responsive neurostimulation for focal epilepsy.
        Neurology. 2020; 95: e1244-e1256https://doi.org/10.1212/WNL.0000000000010154
        • Callaghan B.C.
        • Anand K.
        • Hesdorffer D.
        • Hauser W.A.
        • French J.A.
        Likelihood of seizure remission in an adult population with refractory epilepsy.
        Ann Neurol. 2007; 62: 382-389https://doi.org/10.1002/ana.21166
        • Fisher B.
        • DesMarteau J.A.
        • Koontz E.H.
        • Wilks S.J.
        • Melamed S.E.
        Responsive Vagus Nerve Stimulation for Drug Resistant Epilepsy: A Review of New Features and Practical Guidance for Advanced Practice Providers.
        Front Neurol. 2020; 11610379https://doi.org/10.3389/fneur.2020.610379
        • Wu Y.-C.
        • Liao Y.-S.
        • Yeh W.-H.
        • Liang S.-F.
        • Shaw F.-Z.
        Directions of Deep Brain Stimulation for Epilepsy and Parkinson’s Disease.
        Front Neurosci. 2021; 15680938https://doi.org/10.3389/fnins.2021.680938
        • Higgins J.P.T.
        • Thompson S.G.
        Quantifying heterogeneity in a meta-analysis.
        Stat Med. 2002; 21: 1539-1558https://doi.org/10.1002/sim.1186
        • Pearson M.J.
        • Smart N.A.
        Reported methods for handling missing change standard deviations in meta-analyses of exercise therapy interventions in patients with heart failure: A systematic review.
        PLoS One. 2018; 13: e0205952https://doi.org/10.1371/journal.pone.0205952