Advertisement
Perspective| Volume 142, 109181, May 2023

Download started.

Ok

Treatment of neurometabolic epilepsies: Overview and recent advances

  • Itay Tokatly Latzer
    Affiliations
    Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA

    Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
    Search for articles by this author
  • Phillip L. Pearl
    Correspondence
    Corresponding author at: Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, MA, USA.
    Affiliations
    Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
    Search for articles by this author

      Highlights

      • There is an immense challenge to develop novel therapies for neurometabolic epilepsies.
      • There have been recent dramatic developments in our understanding of the pathomechanisms of neurometabolic epilepsies.
      • This review outlines the emergent targeted established or investigated therapeutics for neurometabolic epilepsies.
      • Multicenter collaborations should be implemented to advance our knowledge of these unique diseases.

      Abstract

      The rarity and heterogeneity of neurometabolic diseases make it challenging to reach evidence-based principles for their specific treatments. Indeed, current treatments for many of these diseases remain symptomatic and supportive. However, an ongoing scientific and medical revolution has led to dramatic breakthroughs in molecular sciences and genetics, revealing precise pathophysiologic mechanisms. Accordingly, this has led to significant progress in the development of novel therapeutic approaches aimed at treating epilepsy resulting from these conditions, as well as their other manifestations. We overview recent notable treatment advancements, from vitamins, trace minerals, and diets to unique medications targeting the elemental pathophysiology at a molecular or cellular level, including enzyme replacement therapy, enzyme enhancing therapy, antisense oligonucleotide therapy, stem cell transplantation, and gene therapy.

      Keywords

      Abbreviations:

      AADC (Aromatic L-amino acid decarboxylase), AAV (Adenovirus-associated vector), AMO (Antisense morpholino oligonucleotides), ARG1 (Recombinant arginase 1), ASL (Arginosuccinate lyase), ASS1 (Arginosuccinate synthetase-1), BBB (Blood-brain-barrier), BCAA (Branched-chain-amino-acids), CGDs (Congenital disorders of glycosylation), CLN2 (Ceroid lipofuscinosis or), CNS (Central nervous system), CPT1 (Carnitine palmitoyltransferase I), CPT2 (Carnitine palmitoyltransferase type 2), DEND (Developmental delay-epilepsy-neonatal diabetes), EET (Enzyme enhancement therapy), ERT (Enzyme replacement therapy), FAO (Fatty acid oxidation), FDA (Food and Drug Administration), GABA (γ-aminobutyric acid), GDH (Glutamate dehydrogenase), Glut-1 (Glucose transporter type I), GSDs (Glycogen storage diseases), HIHA (Hyperinsulinism hyperammonemia), IVA (Isovaleric acidemia), IVIG (intravenous immune globulin), LCHAD (Long-chain 3-hydroxy acyl-CoA dehydrogenase), LND (Lesch–Nyhan disease), LNP (Lipid nanoparticles), LSDs (Lysosomal storage diseases), MCAD (Multiple acyl-CoA dehydrogenase), MCT (Medium-chain triglyceride), MDs (Mitochondrial Diseases), mtDNA (Mitochondrial deoxyribonucleic acid), MMA (Methylmalonic acidemia), MPS (Mucopolysaccharidoses), MSUD (Maple syrup urine disease), OTC (Ornithine Transcarbamylase), PA (Propionic acidemia), PKU (Phenylketonuria), PLP (Pyridoxal-5-phosphate), PNPO (Pyridoxamine-5′-phosphate oxidase), PPAR (proliferator-activated receptor), SSADH (Succinic semialdehyde dehydrogenase), TPP1 (Tripeptidyl peptidase 1), UCDs (Urea cycle disorders), VLCAD (Very-long-chain acyl-CoA dehydrogenase), XLALD (X-linked adrenoleukodystrophy)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Epilepsy & Behavior
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rath A.
        • Salamon V.
        • Peixoto S.
        • Hivert V.
        • Laville M.
        • Segrestin B.
        • et al.
        A systematic literature review of evidence-based clinical practice for rare diseases: what are the perceived and real barriers for improving the evidence and how can they be overcome?.
        Trials. 2017; 18: 556
        • Chuang D.T.
        • Shih V.E.
        • Max W.R.
        Maple syrup urine disease (Branched-Chain Ketoaciduria).
        in: Valle D.L. Antonarakis S. Ballabio A. Beaudet A.L. Mitchell G.A. The online metabolic and molecular bases of inherited disease. McGraw-Hill Education, New York, NY2019
        • Blackburn P.R.
        • Gass J.M.
        • Vairo F.P.E.
        • Farnham K.M.
        • Atwal H.K.
        • Macklin S.
        • et al.
        Maple syrup urine disease: mechanisms and management.
        Appl Clin Genet. 2017; 10: 57-66
        • Strauss K.A.
        • Wardley B.
        • Robinson D.
        • Hendrickson C.
        • Rider N.L.
        • Puffenberger E.G.
        • et al.
        Classical maple syrup urine disease and brain development: principles of management and formula design.
        Mol Genet Metab. 2010; 99: 333-345
        • Strauss K.A.
        • Carson V.J.
        • Soltys K.
        • Young M.E.
        • Bowser L.E.
        • Puffenberger E.G.
        • et al.
        Branched-chain alpha-ketoacid dehydrogenase deficiency (maple syrup urine disease): Treatment, biomarkers, and outcomes.
        Mol Genet Metab. 2020; 129: 193-206
        • Barshop B.A.
        • Khanna A.
        Domino hepatic transplantation in maple syrup urine disease.
        N Engl J Med. 2005; 353: 2410-2411
        • Burrage L.C.
        • Jain M.
        • Gandolfo L.
        • Lee B.H.
        Members of the Urea Cycle Disorders C, Nagamani SC. Sodium phenylbutyrate decreases plasma branched-chain amino acids in patients with urea cycle disorders.
        Mol Genet Metab. 2014; 113: 131-135
        • Mescka C.P.
        • Guerreiro G.
        • Hammerschmidt T.
        • Faverzani J.
        • de Moura C.D.
        • Mandredini V.
        • et al.
        L-Carnitine supplementation decreases DNA damage in treated MSUD patients.
        Mutat Res. 2015; 775: 43-47
        • Lee W.T.
        Disorders of amino acid metabolism associated with epilepsy.
        Brain Development. 2011; 33: 745-752
        • Kayaalp E.
        • Treacy E.
        • Waters P.J.
        • Byck S.
        • Nowacki P.
        • Scriver C.R.
        Human phenylalanine hydroxylase mutations and hyperphenylalaninemia phenotypes: a metanalysis of genotype-phenotype correlations.
        Am J Hum Genet. 1997; 61: 1309-1317
        • Sanford M.
        • Keating G.M.
        Sapropterin: a review of its use in the treatment of primary hyperphenylalaninaemia.
        Drugs. 2009; 69: 461-476
        • van Vliet D.
        • Bruinenberg V.M.
        • Mazzola P.N.
        • van Faassen M.H.
        • de Blaauw P.
        • Kema I.P.
        • et al.
        Large Neutral Amino Acid Supplementation Exerts Its Effect through Three Synergistic Mechanisms: Proof of Principle in Phenylketonuria Mice.
        PLoS One. 2015; 10: e0143833
        • Beblo S.
        • Reinhardt H.
        • Muntau A.C.
        • Mueller-Felber W.
        • Roscher A.A.
        • Koletzko B.
        Fish oil supplementation improves visual evoked potentials in children with phenylketonuria.
        Neurology. 2001; 57: 1488-1491
        • Bratkovic D.
        • Margvelashvili L.
        • Tchan M.C.
        • Nisbet J.
        • Smith N.
        PTC923 (sepiapterin) lowers elevated blood phenylalanine in subjects with phenylketonuria: a phase 2 randomized, multi-center, three-period crossover, open-label, active controlled, all-comers study.
        Metabolism. 2022; 128155116
        • Thomas J.
        • Levy H.
        • Amato S.
        • Vockley J.
        • Zori R.
        • Dimmock D.
        • et al.
        Pegvaliase for the treatment of phenylketonuria: Results of a long-term phase 3 clinical trial program (PRISM).
        Mol Genet Metab. 2018; 124: 27-38
        • Perez-Garcia C.G.
        • Diaz-Trelles R.
        • Vega J.B.
        • Bao Y.
        • Sablad M.
        • Limphong P.
        • et al.
        Development of an mRNA replacement therapy for phenylketonuria.
        Mol Ther Nucleic Acids. 2022; 28: 87-98
        • Komrower G.M.
        • Lambert A.M.
        • Cusworth D.C.
        • Westall R.G.
        Dietary treatment of homocystinuria.
        Arch Dis Child. 1966; 41: 666-671
        • Yap S.
        • Rushe H.
        • Howard P.M.
        • Naughten E.R.
        The intellectual abilities of early-treated individuals with pyridoxine-nonresponsive homocystinuria due to cystathionine beta-synthase deficiency.
        J Inherit Metab Dis. 2001; 24: 437-447
        • Jakubowski H.
        Proteomic exploration of cystathionine β-synthase deficiency: implications for the clinic.
        Expert Rev Proteomics. 2020; 17: 751-765
        • Bublil E.M.
        • Majtan T.
        Classical homocystinuria: From cystathionine beta-synthase deficiency to novel enzyme therapies.
        Biochimie. 2020; 173: 48-56
        • Lee H.O.
        • Salami C.O.
        • Sondhi D.
        • Kaminsky S.M.
        • Crystal R.G.
        • Kruger W.D.
        Long-term functional correction of cystathionine beta-synthase deficiency in mice by adeno-associated viral gene therapy.
        J Inherit Metab Dis. 2021; 44: 1382-1392
        • Baumgartner M.R.
        • Hörster F.
        • Dionisi-Vici C.
        • Haliloglu G.
        • Karall D.
        • Chapman K.A.
        • et al.
        Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia.
        Orphanet J Rare Dis. 2014; 9: 130
      1. Niemi AK, Kim IK, Krueger CE, Cowan TM, Baugh N, Farrell R, et al. Treatment of methylmalonic acidemia by liver or combined liver-kidney transplantation. J Pediatr 2015;166:1455–61.e1.

        • Cohn R.M.
        • Yudkoff M.
        • Rothman R.
        • Segal S.
        Isovaleric acidemia: use of glycine therapy in neonates.
        N Engl J Med. 1978; 299: 996-999
        • Mayatepek E.
        • Kurczynski T.W.
        • Hoppel C.L.
        Long-term L-carnitine treatment in isovaleric acidemia.
        Pediatr Neurol. 1991; 7: 137-140
        • Chandler R.J.
        • Venditti C.P.
        Gene Therapy for Methylmalonic Acidemia: Past, Present, and Future.
        Hum Gene Ther. 2019; 30: 1236-1244
        • Venturoni L.E.
        • Venditti C.P.
        Treatment of metabolic disorders using genomic technologies: Lessons from MMA.
        J Inherit Metab Dis. 2022;
        • Chandler R.J.
        • Chandrasekaran S.
        • Carrillo-Carrasco N.
        • Senac J.S.
        • Hofherr S.E.
        • Barry M.A.
        • et al.
        Adeno-associated virus serotype 8 gene transfer rescues a neonatal lethal murine model of propionic acidemia.
        Hum Gene Ther. 2011; 22: 477-481
        • Jiang L.
        • Park J.-S.
        • Yin L.
        • Laureano R.
        • Jacquinet E.
        • Yang J.
        • et al.
        Dual mRNA therapy restores metabolic function in long-term studies in mice with propionic acidemia.
        Nat Commun. 2020; 11: 5339
        • Merritt 2nd, J.L.
        • Norris M.
        • Kanungo S.
        Fatty acid oxidation disorders.
        Ann Transl Med. 2018; 6: 473
        • Goetzman E.S.
        Advances in the Understanding and Treatment of Mitochondrial Fatty Acid Oxidation Disorders.
        Curr Genet Med Rep. 2017; 5: 132-142
        • Tein I.
        • Donner E.J.
        • Hale D.E.
        • Murphy E.G.
        Clinical and neurophysiologic response of myopathy and neuropathy in long-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency to oral prednisone.
        Pediatr Neurol. 1995; 12: 68-76
        • Harding C.O.
        • Gillingham M.B.
        • van Calcar S.C.
        • Wolff J.A.
        • Verhoeve J.N.
        • Mills M.D.
        Docosahexaenoic acid and retinal function in children with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency.
        J Inherit Metab Dis. 1999; 22: 276-280
        • Roe C.R.
        • Mochel F.
        Anaplerotic diet therapy in inherited metabolic disease: therapeutic potential.
        J Inherit Metab Dis. 2006; 29: 332-340
        • Bonnefont J.P.
        • Bastin J.
        • Behin A.
        • Djouadi F.
        Bezafibrate for an inborn mitochondrial beta-oxidation defect.
        N Engl J Med. 2009; 360: 838-840
        • Tan L.
        • Narayan S.B.
        • Chen J.
        • Meyers G.D.
        • Bennett M.J.
        PTC124 improves readthrough and increases enzymatic activity of the CPT1A R160X nonsense mutation.
        J Inherit Metab Dis. 2011; 34: 443-447
        • Kormanik K.
        • Kang H.
        • Cuebas D.
        • Vockley J.
        • Mohsen A.W.
        Evidence for involvement of medium chain acyl-CoA dehydrogenase in the metabolism of phenylbutyrate.
        Mol Genet Metab. 2012; 107: 684-689
        • Tenopoulou M.
        • Chen J.
        • Bastin J.
        • Bennett M.J.
        • Ischiropoulos H.
        • Doulias P.T.
        Strategies for correcting very long chain acyl-CoA dehydrogenase deficiency.
        J Biol Chem. 2015; 290: 10486-10494
        • Keeler A.M.
        • Conlon T.
        • Walter G.
        • Zeng H.
        • Shaffer S.A.
        • Dungtao F.
        • et al.
        Long-term correction of very long-chain acyl-coA dehydrogenase deficiency in mice using AAV9 gene therapy.
        Mol Ther. 2012; 20: 1131-1138
        • Häberle J.
        • Boddaert N.
        • Burlina A.
        • Chakrapani A.
        • Dixon M.
        • Huemer M.
        • et al.
        Suggested guidelines for the diagnosis and management of urea cycle disorders.
        Orphanet J Rare Dis. 2012; 7: 32
        • Yu L.
        • Rayhill S.C.
        • Hsu E.K.
        • Landis C.S.
        Liver Transplantation for Urea Cycle Disorders: Analysis of the United Network for Organ Sharing Database.
        Transplant Proc. 2015; 47: 2413-2418
        • Meyburg J.
        • Opladen T.
        • Spiekerkötter U.
        • Schlune A.
        • Schenk J.P.
        • Schmidt J.
        • et al.
        Human heterologous liver cells transiently improve hyperammonemia and ureagenesis in individuals with severe urea cycle disorders.
        J Inherit Metab Dis. 2018; 41: 81-90
        • Smets F.
        • Dobbelaere D.
        • McKiernan P.
        • Dionisi-Vici C.
        • Broué P.
        • Jacquemin E.
        • et al.
        Phase I/II Trial of Liver-derived Mesenchymal Stem Cells in Pediatric Liver-based Metabolic Disorders: A Prospective, Open Label, Multicenter, Partially Randomized, Safety Study of One Cycle of Heterologous Human Adult Liver-derived Progenitor Cells (HepaStem) in Urea Cycle Disorders and Crigler-Najjar Syndrome Patients.
        Transplantation. 2019; 103: 1903-1915
        • Sin Y.Y.
        • Ballantyne L.L.
        • Richmond C.R.
        • Funk C.D.
        Transplantation of Gene-Edited Hepatocyte-like Cells Modestly Improves Survival of Arginase-1-Deficient Mice.
        Mol Ther Nucleic Acids. 2018; 10: 122-130
        • Nagamani S.C.
        • Campeau P.M.
        • Shchelochkov O.A.
        • Premkumar M.H.
        • Guse K.
        • Brunetti-Pierri N.
        • et al.
        Nitric-oxide supplementation for treatment of long-term complications in argininosuccinic aciduria.
        Am J Hum Genet. 2012; 90: 836-846
        • Baruteau J.
        • Diez-Fernandez C.
        • Lerner S.
        • Ranucci G.
        • Gissen P.
        • Dionisi-Vici C.
        • et al.
        Argininosuccinic aciduria: Recent pathophysiological insights and therapeutic prospects.
        J Inherit Metab Dis. 2019; 42: 1147-1161
        • Massafra V.
        • Milona A.
        • Vos H.R.
        • Ramos R.J.J.
        • Gerrits J.
        • Willemsen E.C.L.
        • et al.
        Farnesoid X Receptor Activation Promotes Hepatic Amino Acid Catabolism and Ammonium Clearance in Mice.
        Gastroenterology. 2017; 152: 1462-1476.e10
        • Burrage L.C.
        • Sun Q.
        • Elsea S.H.
        • Jiang M.M.
        • Nagamani S.C.
        • Frankel A.E.
        • et al.
        Human recombinant arginase enzyme reduces plasma arginine in mouse models of arginase deficiency.
        Hum Mol Genet. 2015; 24: 6417-6427
        • Prieve M.G.
        • Harvie P.
        • Monahan S.D.
        • Roy D.
        • Li A.G.
        • Blevins T.L.
        • et al.
        Targeted mRNA Therapy for Ornithine Transcarbamylase Deficiency.
        Mol Ther. 2018; 26: 801-813
        • Soria L.R.
        • Ah Mew N.
        • Brunetti-Pierri N.
        Progress and challenges in development of new therapies for urea cycle disorders.
        Hum Mol Genet. 2019; 28: R42-R48
        • Prasad V.K.
        • Kurtzberg J.
        Emerging trends in transplantation of inherited metabolic diseases.
        Bone Marrow Transplant. 2008; 41: 99-108
        • Issa S.S.
        • Shaimardanova A.A.
        • Valiullin V.V.
        • Rizvanov A.A.
        • Solovyeva V.V.
        Mesenchymal Stem Cell-Based Therapy for Lysosomal Storage Diseases and Other Neurodegenerative Disorders.
        Front Pharmacol. 2022; 13859516
        • Desnick R.J.
        Enzyme replacement and enhancement therapies for lysosomal diseases.
        J Inherit Metab Dis. 2004; 27: 385-410
      2. Schulz A, Ajayi T, Specchio N, de Los Reyes E, Gissen P, Ballon D, et al., Group CLNS. Study of Intraventricular Cerliponase Alfa for CLN2 Disease. N Engl J Med 2018;378:1898–1907.

        • Shayman J.A.
        • Larsen S.D.
        The development and use of small molecule inhibitors of glycosphingolipid metabolism for lysosomal storage diseases.
        J Lipid Res. 2014; 55: 1215-1225
        • Hughes D.A.
        • Nicholls K.
        • Shankar S.P.
        • Sunder-Plassmann G.
        • Koeller D.
        • Nedd K.
        • et al.
        Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease: 18-month results from the randomised phase III ATTRACT study.
        J Med Genet. 2017; 54: 288-296
        • Kishnani P.
        • Tarnopolsky M.
        • Roberts M.
        • Sivakumar K.
        • Dasouki M.
        • Dimachkie M.M.
        • et al.
        Duvoglustat HCl Increases Systemic and Tissue Exposure of Active Acid α-Glucosidase in Pompe Patients Co-administered with Alglucosidase α.
        Mol Ther. 2017; 25: 1199-1208
        • Platt F.M.
        • Neises G.R.
        • Dwek R.A.
        • Butters T.D.
        N-butyldeoxynojirimycin is a novel inhibitor of glycolipid biosynthesis.
        J Biol Chem. 1994; 269: 8362-8365
        • Pastores G.M.
        • Barnett N.L.
        Substrate reduction therapy: miglustat as a remedy for symptomatic patients with Gaucher disease type 1.
        Expert Opin Investig Drugs. 2003; 12: 273-281
        • Patterson M.C.
        • Mengel E.
        • Vanier M.T.
        • Schwierin B.
        • Muller A.
        • Cornelisse P.
        • et al.
        Stable or improved neurological manifestations during miglustat therapy in patients from the international disease registry for Niemann-Pick disease type C: an observational cohort study.
        Orphanet J Rare Dis. 2015; 10: 65
        • Beck M.
        Treatment strategies for lysosomal storage disorders.
        Dev Med Child Neurol. 2018; 60: 13-18
        • Sevin C.
        • Deiva K.
        Clinical Trials for Gene Therapy in Lysosomal Diseases With CNS Involvement.
        Front Mol Biosci. 2021; 8624988
        • Braverman N.E.
        • Raymond G.V.
        • Rizzo W.B.
        • Moser A.B.
        • Wilkinson M.E.
        • Stone E.M.
        • et al.
        Peroxisome biogenesis disorders in the Zellweger spectrum: An overview of current diagnosis, clinical manifestations, and treatment guidelines.
        Mol Genet Metab. 2016; 117: 313-321
        • Ma C.Y.
        • Li C.
        • Zhou X.
        • Zhang Z.
        • Jiang H.
        • Liu H.
        • et al.
        Management of adrenoleukodystrophy: From pre-clinical studies to the development of new therapies.
        Biomed Pharmacother. 2021; 143112214
        • Aubourg P.
        • Blanche S.
        • Jambaqué I.
        • Rocchiccioli F.
        • Kalifa G.
        • Naud-Saudreau C.
        • et al.
        Reversal of early neurologic and neuroradiologic manifestations of X-linked adrenoleukodystrophy by bone marrow transplantation.
        N Engl J Med. 1990; 322: 1860-1866
        • Mahmood A.
        • Raymond G.V.
        • Dubey P.
        • Peters C.
        • Moser H.W.
        Survival analysis of haematopoietic cell transplantation for childhood cerebral X-linked adrenoleukodystrophy: a comparison study.
        Lancet Neurol. 2007; 6: 687-692
        • Peters C.
        • Charnas L.R.
        • Tan Y.
        • Ziegler R.S.
        • Shapiro E.G.
        • DeFor T.
        • et al.
        Cerebral X-linked adrenoleukodystrophy: the international hematopoietic cell transplantation experience from 1982 to 1999.
        Blood. 2004; 104: 881-888
        • Keam S.J.
        Elivaldogene Autotemcel: First Approval.
        Mol Diagn Ther. 2021; 25: 803-809
        • Eichler F.
        • Duncan C.
        • Musolino P.L.
        • Orchard P.J.
        • De Oliveira S.
        • Thrasher A.J.
        • et al.
        Hematopoietic Stem-Cell Gene Therapy for Cerebral Adrenoleukodystrophy.
        N Engl J Med. 2017; 377: 1630-1638
        • Ondruskova N.
        • Cechova A.
        • Hansikova H.
        • Honzik T.
        • Jaeken J.
        Congenital disorders of glycosylation: Still “hot” in 2020.
        Biochim Biophys Acta Gen Subj. 2021; 1865129751
        • Wong S.Y.
        • Gadomski T.
        • van Scherpenzeel M.
        • Honzik T.
        • Hansikova H.
        • Holmefjord K.S.B.
        • et al.
        Oral D-galactose supplementation in PGM1-CDG.
        Genet Med. 2017; 19: 1226-1235
        • Witters P.
        • Tahata S.
        • Barone R.
        • Õunap K.
        • Salvarinova R.
        • Grønborg S.
        • et al.
        Clinical and biochemical improvement with galactose supplementation in SLC35A2-CDG.
        Genet Med. 2020; 22: 1102-1107
        • Park J.H.
        • Hogrebe M.
        • Grüneberg M.
        • DuChesne I.
        • von der Heiden A.L.
        • Reunert J.
        • et al.
        SLC39A8 Deficiency: A Disorder of Manganese Transport and Glycosylation.
        Am J Hum Genet. 2015; 97: 894-903
        • Morelle W.
        • Potelle S.
        • Witters P.
        • Wong S.
        • Climer L.
        • Lupashin V.
        • et al.
        Galactose Supplementation in Patients With TMEM165-CDG Rescues the Glycosylation Defects.
        J Clin Endocrinol Metab. 2017; 102: 1375-1386
        • Hidalgo A.
        • Ma S.
        • Peired A.J.
        • Weiss L.A.
        • Cunningham-Rundles C.
        • Frenette P.S.
        Insights into leukocyte adhesion deficiency type 2 from a novel mutation in the GDP-fucose transporter gene.
        Blood. 2003; 101: 1705-1712
        • Koch J.
        • Mayr J.A.
        • Alhaddad B.
        • Rauscher C.
        • Bierau J.
        • Kovacs-Nagy R.
        • et al.
        CAD mutations and uridine-responsive epileptic encephalopathy.
        Brain. 2017; 140: 279-286
        • Mayatepek E.
        • Kohlmüller D.
        Mannose supplementation in carbohydrate-deficient glycoprotein syndrome type I and phosphomannomutase deficiency.
        Eur J Pediatr. 1998; 157: 605-606
        • Janssen M.C.
        • de Kleine R.H.
        • van den Berg A.P.
        • Heijdra Y.
        • van Scherpenzeel M.
        • Lefeber D.J.
        • et al.
        Successful liver transplantation and long-term follow-up in a patient with MPI-CDG.
        Pediatrics. 2014; 134: e279-e283
        • Kapusta L.
        • Zucker N.
        • Frenckel G.
        • Medalion B.
        • Ben Gal T.
        • Birk E.
        • et al.
        From discrete dilated cardiomyopathy to successful cardiac transplantation in congenital disorders of glycosylation due to dolichol kinase deficiency (DK1-CDG).
        Heart Fail Rev. 2013; 18: 187-196
        • Park J.H.
        • Marquardt T.
        Treatment Options in Congenital Disorders of Glycosylation.
        Front Genet. 2021; 12735348
        • Almeida A.M.
        • Murakami Y.
        • Baker A.
        • Maeda Y.
        • Roberts I.A.
        • Kinoshita T.
        • et al.
        Targeted therapy for inherited GPI deficiency.
        N Engl J Med. 2007; 356: 1641-1647
        • Kuki I.
        • Takahashi Y.
        • Okazaki S.
        • Kawawaki H.
        • Ehara E.
        • Inoue N.
        • et al.
        Vitamin B6-responsive epilepsy due to inherited GPI deficiency.
        Neurology. 2013; 81: 1467-1469
        • Joshi C.
        • Kolbe D.L.
        • Mansilla M.A.
        • Mason S.
        • Smith R.J.
        • Campbell C.A.
        Ketogenic diet - A novel treatment for early epileptic encephalopathy due to PIGA deficiency.
        Brain Development. 2016; 38: 848-851
        • Parikh S.
        • Goldstein A.
        • Karaa A.
        • Koenig M.K.
        • Anselm I.
        • Brunel-Guitton C.
        • et al.
        Patient care standards for primary mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society.
        Genet Med. 2017; 19
        • Tinker R.J.
        • Lim A.Z.
        • Stefanetti R.J.
        • McFarland R.
        Current and Emerging Clinical Treatment in Mitochondrial Disease.
        Mol Diagn Ther. 2021; 25: 181-206
        • Ariceta G.
        • Giordano V.
        • Santos F.
        Effects of long-term cysteamine treatment in patients with cystinosis.
        Pediatr Nephrol. 2019; 34: 571-578
        • Stacpoole P.W.
        • Kurtz T.L.
        • Han Z.
        • Langaee T.
        Role of dichloroacetate in the treatment of genetic mitochondrial diseases.
        Adv Drug Deliv Rev. 2008; 60: 1478-1487
        • Lopez-Gomez C.
        • Levy R.J.
        • Sanchez-Quintero M.J.
        • Juanola-Falgarona M.
        • Barca E.
        • Garcia-Diaz B.
        • et al.
        Deoxycytidine and Deoxythymidine Treatment for Thymidine Kinase 2 Deficiency.
        Ann Neurol. 2017; 81: 641-652
        • Hirano M.
        • Emmanuele V.
        • Quinzii C.M.
        Emerging therapies for mitochondrial diseases.
        Essays Biochem. 2018; 62: 467-481
        • Gloyn A.L.
        • Pearson E.R.
        • Antcliff J.F.
        • Proks P.
        • Bruining G.J.
        • Slingerland A.S.
        • et al.
        Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes.
        N Engl J Med. 2004; 350: 1838-1849
        • Shimomura K.
        • Hörster F.
        • de Wet H.
        • Flanagan S.E.
        • Ellard S.
        • Hattersley A.T.
        • et al.
        A novel mutation causing DEND syndrome: a treatable channelopathy of pancreas and brain.
        Neurology. 2007; 69: 1342-1349
        • Yahil S.
        • Wozniak D.F.
        • Yan Z.
        • Mennerick S.
        • Remedi M.S.
        Cognitive deficits and impaired hippocampal long-term potentiation in K(ATP)-induced DEND syndrome.
        Proc Natl Acad Sci U S A. 2021; 118
        • Houtman M.J.C.
        • Friesacher T.
        • Chen X.
        • Zangerl-Plessl E.M.
        • van der Heyden M.A.G.
        • Stary-Weinzinger A.
        Development of I(KATP) Ion Channel Blockers Targeting Sulfonylurea Resistant Mutant K(IR)6.2 Based Channels for Treating DEND Syndrome.
        Front Pharmacol. 2021; 12814066
        • Palladino A.A.
        • Stanley C.A.
        The hyperinsulinism/hyperammonemia syndrome.
        Rev Endocr Metab Disord. 2010; 11: 171-178
        • Rosenfeld E.
        • Nanga R.P.R.
        • Lucas A.
        • Revell A.Y.
        • Thomas A.
        • Thomas N.H.
        • et al.
        Characterizing the neurological phenotype of the hyperinsulinism hyperammonemia syndrome.
        Orphanet J Rare Dis. 2022; 17: 248
        • Bian Y.
        • Hou W.
        • Chen X.
        • Fang J.
        • Xu N.
        • Ruan B.H.
        Glutamate Dehydrogenase as a Promising Target for Hyperinsulinism Hyperammonemia Syndrome Therapy.
        Curr Med Chem. 2022; 29: 2652-2672
        • Tang M.
        • Park S.H.
        • De Vivo D.C.
        • Monani U.R.
        Therapeutic strategies for glucose transporter 1 deficiency syndrome.
        Ann Clin Transl Neurol. 2019; 6: 1923-1932
        • Tchapyjnikov D.
        • Mikati M.A.
        Acetazolamide-responsive Episodic Ataxia Without Baseline Deficits or Seizures Secondary to GLUT1 Deficiency: A Case Report and Review of the Literature.
        Neurologist. 2018; 23: 17-18
        • Nakamura S.
        • Muramatsu S.I.
        • Takino N.
        • Ito M.
        • Jimbo E.F.
        • Shimazaki K.
        • et al.
        Gene therapy for Glut1-deficient mouse using an adeno-associated virus vector with the human intrinsic GLUT1 promoter.
        J Gene Med. 2018; 20: e3013
        • Kishnani P.S.
        • Goldstein J.
        • Austin S.L.
        • Arn P.
        • Bachrach B.
        • Bali D.S.
        • et al.
        Diagnosis and management of glycogen storage diseases type VI and IX: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG).
        Genet Med. 2019; 21: 772-789
        • Kishnani P.S.
        • Sun B.
        • Koeberl D.D.
        Gene therapy for glycogen storage diseases.
        Hum Mol Genet. 2019; 28: R31-R41
        • Jinnah H.A.
        Lesch-Nyhan disease: from mechanism to model and back again.
        Dis Model Mech. 2009; 2: 116-121
        • Visser J.E.
        • Schretlen D.J.
        • Bloem B.R.
        • Jinnah H.A.
        Levodopa is not a useful treatment for Lesch-Nyhan disease.
        Mov Disord. 2011; 26: 746-749
        • Nyhan W.L.
        Lesch-Nyhan Disease.
        J Hist Neurosci. 2005; 14: 1-10
        • Visser J.E.
        • Cotton A.C.
        • Schretlen D.J.
        • Bloch J.
        • Tedroff K.
        • Schechtmann G.
        • et al.
        Deep brain stimulation in Lesch-Nyhan disease: outcomes from the patient's perspective.
        Dev Med Child Neurol. 2021; 63: 963-968
        • Glick N.
        Dramatic reduction in self-injury in Lesch-Nyhan disease following S-adenosylmethionine administration.
        J Inherit Metab Dis. 2006; 29: 687
        • Chen B.C.
        • Balasubramaniam S.
        • McGown I.N.
        • O'Neill J.P.
        • Chng G.S.
        • Keng W.T.
        • et al.
        Treatment of Lesch-Nyhan disease with S-adenosylmethionine: experience with five young Malaysians, including a girl.
        Brain Development. 2014; 36: 593-600
        • Yamanaka S.
        Induced pluripotent stem cells: past, present, and future.
        Cell Stem Cell. 2012; 10: 678-684
        • Hallett P.J.
        • Deleidi M.
        • Astradsson A.
        • Smith G.A.
        • Cooper O.
        • Osborn T.M.
        • et al.
        Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson's disease.
        Cell Stem Cell. 2015; 16: 269-274
        • Bell S.
        • Kolobova I.
        • Crapper L.
        • Ernst C.
        Lesch-Nyhan Syndrome: Models, Theories, and Therapies.
        Mol Syndromol. 2016; 7: 302-311
        • Brun L.
        • Ngu L.H.
        • Keng W.T.
        • Ch'ng G.S.
        • Choy Y.S.
        • Hwu W.L.
        • et al.
        Clinical and biochemical features of aromatic L-amino acid decarboxylase deficiency.
        Neurology. 2010; 75: 64-71
        • Swoboda K.J.
        • Hyland K.
        • Goldstein D.S.
        • Kuban K.C.
        • Arnold L.A.
        • Holmes C.S.
        • et al.
        Clinical and therapeutic observations in aromatic L-amino acid decarboxylase deficiency.
        Neurology. 1999; 53: 1205-1211
        • Mastrangelo M.
        • Caputi C.
        • Galosi S.
        • Giannini M.T.
        • Leuzzi V.
        Transdermal rotigotine in the treatment of aromatic L-amino acid decarboxylase deficiency.
        Mov Disord. 2013; 28: 556-557
        • Kojima K.
        • Nakajima T.
        • Taga N.
        • Miyauchi A.
        • Kato M.
        • Matsumoto A.
        • et al.
        Gene therapy improves motor and mental function of aromatic l-amino acid decarboxylase deficiency.
        Brain. 2019; 142: 322-333
        • Chien Y.H.
        • Lee N.C.
        • Tseng S.H.
        • Tai C.H.
        • Muramatsu S.I.
        • Byrne B.J.
        • et al.
        Efficacy and safety of AAV2 gene therapy in children with aromatic L-amino acid decarboxylase deficiency: an open-label, phase 1/2 trial.
        Lancet Child Adolesc Health. 2017; 1: 265-273
        • Tai C.H.
        • Lee N.C.
        • Chien Y.H.
        • Byrne B.J.
        • Muramatsu S.I.
        • Tseng S.H.
        • et al.
        Long-term efficacy and safety of eladocagene exuparvovec in patients with AADC deficiency.
        Mol Ther. 2022; 30: 509-518
        • Parviz M.
        • Vogel K.
        • Gibson K.M.
        • Pearl P.L.
        Disorders of GABA metabolism: SSADH and GABA-transaminase deficiencies.
        J Pediatr Epilepsy. 2014; 3: 217-227
        • Pearl P.L.
        • Gibson K.M.
        • Cortez M.A.
        • Wu Y.
        • Carter Snead 3rd, O.
        • Knerr I.
        • et al.
        Succinic semialdehyde dehydrogenase deficiency: lessons from mice and men.
        J Inherit Metab Dis. 2009; 32: 343-352
        • Vogel K.R.
        • Ainslie G.R.
        • Walters D.C.
        • McConnell A.
        • Dhamne S.C.
        • Rotenberg A.
        • et al.
        Succinic semialdehyde dehydrogenase deficiency, a disorder of GABA metabolism: an update on pharmacological and enzyme-replacement therapeutic strategies.
        J Inherit Metab Dis. 2018; 41: 699-708
        • Gupta M.
        • Jansen E.E.
        • Senephansiri H.
        • Jakobs C.
        • Snead O.C.
        • Grompe M.
        • et al.
        Liver-directed adenoviral gene transfer in murine succinate semialdehyde dehydrogenase deficiency.
        Mol Ther. 2004; 9: 527-539
        • Hogema B.M.
        • Gupta M.
        • Senephansiri H.
        • Burlingame T.G.
        • Taylor M.
        • Jakobs C.
        • et al.
        Pharmacologic rescue of lethal seizures in mice deficient in succinate semialdehyde dehydrogenase.
        Nat Genet. 2001; 29: 212-216
        • Lee H.H.C.
        • Pearl P.L.
        • Rotenberg A.
        Enzyme Replacement Therapy for Succinic Semialdehyde Dehydrogenase Deficiency: Relevance in γ-Aminobutyric Acid Plasticity.
        J Child Neurol. 2021; 36: 1200-1209
        • Mills P.B.
        • Footitt E.J.
        • Mills K.A.
        • Tuschl K.
        • Aylett S.
        • Varadkar S.
        • et al.
        Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency).
        Brain. 2010; 133: 2148-2159
        • Stockler S.
        • Plecko B.
        • Gospe Jr., S.M.
        • Coulter-Mackie M.
        • Connolly M.
        • van Karnebeek C.
        • et al.
        Pyridoxine dependent epilepsy and antiquitin deficiency: clinical and molecular characteristics and recommendations for diagnosis, treatment and follow-up.
        Mol Genet Metab. 2011; 104: 48-60
        • Walker V.
        • Mills G.A.
        • Peters S.A.
        • Merton W.L.
        Fits, pyridoxine, and hyperprolinaemia type II.
        Arch Dis Child. 2000; 82: 236-237
        • Farrant R.D.
        • Walker V.
        • Mills G.A.
        • Mellor J.M.
        • Langley G.J.
        Pyridoxal phosphate de-activation by pyrroline-5-carboxylic acid. Increased risk of vitamin B6 deficiency and seizures in hyperprolinemia type II.
        J Biol Chem. 2001; 276: 15107-15116
        • Reid E.S.
        • Williams H.
        • Stabej Ple Q.
        • James C.
        • Ocaka L.
        • Bacchelli C.
        • et al.
        Seizures Due to a KCNQ2 Mutation: Treatment with Vitamin B6.
        JIMD Rep. 2016; 27: 79-84
        • Coughlin 2nd, C.R.
        • Tseng L.A.
        • Abdenur J.E.
        • Ashmore C.
        • Boemer F.
        • Bok L.A.
        • et al.
        Consensus guidelines for the diagnosis and management of pyridoxine-dependent epilepsy due to α-aminoadipic semialdehyde dehydrogenase deficiency.
        J Inherit Metab Dis. 2021; 44: 178-192
        • Mills P.B.
        • Camuzeaux S.S.
        • Footitt E.J.
        • Mills K.A.
        • Gissen P.
        • Fisher L.
        • et al.
        Epilepsy due to PNPO mutations: genotype, environment and treatment affect presentation and outcome.
        Brain. 2014; 137: 1350-1360
        • Gallagher R.C.
        • Van Hove J.L.
        • Scharer G.
        • Hyland K.
        • Plecko B.
        • Waters P.J.
        • et al.
        Folinic acid-responsive seizures are identical to pyridoxine-dependent epilepsy.
        Ann Neurol. 2009; 65: 550-556
        • Zempleni J.
        • Hassan Y.I.
        • Wijeratne S.S.
        Biotin and biotinidase deficiency.
        Expert Rev Endocrinol Metab. 2008; 3: 715-724
        • Hauth I.
        • Waterham H.R.
        • Wanders R.J.A.
        • van der Crabben S.N.
        • van Karnebeek C.D.M.
        A mild case of sodium-dependent multivitamin transporter (SMVT) deficiency illustrating the importance of treatment response in variant classification.
        Cold Spring Harb Mol Case Stud. 2022; 8
        • Oommen A.T.
        • Polavarapu K.
        • Christopher R.
        • Netravathi M.
        Biotin-Responsive Basal Ganglia Disease: Treatable Metabolic Disorder with SLC19A3 Mutation Presenting as Rapidly Progressive Dementia.
        Neurol India. 2022; 70: 733-736
        • Alfadhel M.
        • Almuntashri M.
        • Jadah R.H.
        • Bashiri F.A.
        • Al Rifai M.T.
        • Al Shalaan H.
        • et al.
        Biotin-responsive basal ganglia disease should be renamed biotin-thiamine-responsive basal ganglia disease: a retrospective review of the clinical, radiological and molecular findings of 18 new cases.
        Orphanet J Rare Dis. 2013; 8: 83