Advertisement
Research Article| Volume 142, 109175, May 2023

Download started.

Ok

Personalized whole brain modeling of status epilepticus

      Abstract

      How status epilepticus (SE) is generated and propagates in the brain is not known. As for seizures, a patient-specific approach is necessary, and the analysis should be performed at the whole brain level. Personalized brain models can be used to study seizure genesis and propagation at the whole brain scale in The Virtual Brain (TVB), using the Epileptor mathematical construct. Building on the fact that SE is part of the repertoire of activities that the Epileptor can generate, we present the first attempt to model SE at the whole brain scale in TVB, using data from a patient who experienced SE during presurgical evaluation. Simulations reproduced the patterns found with SEEG recordings. We find that if, as expected, the pattern of SE propagation correlates with the properties of the patient’s structural connectome, SE propagation also depends upon the global state of the network, i.e., that SE propagation is an emergent property. We conclude that individual brain virtualization can be used to study SE genesis and propagation. This type of theoretical approach may be used to design novel interventional approaches to stop SE. This paper was presented at the 8th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures held in September 2022.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Epilepsy & Behavior
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Acerbo E.
        • Jegou A.
        • Luff C.
        • Dzialecka P.
        • Botzanowski B.
        • Missey F.
        • et al.
        Focal non-invasive deep-brain stimulation with temporal interference for the suppression of epileptic biomarkers.
        Front Neurosci. 2022; 16945221
        • Balatskaya A.
        • Roehri N.
        • Lagarde S.
        • Pizzo F.
        • Medina S.
        • Wendling F.
        • et al.
        The “Connectivity Epileptogenicity Index ” (cEI), a method for mapping the different seizure onset patterns in StereoElectroEncephalography recorded seizures.
        Clin Neurophysiol. 2020; 131: 1947-1955
        • Burman R.J.
        • Rosch R.E.
        • Wilmshurst J.M.
        • Sen A.
        • Ramantani G.
        • Akerman C.J.
        • et al.
        Why won't it stop? The dynamics of benzodiazepine resistance in status epilepticus.
        Nat Rev Neurol. 2022; 18: 428-441
        • El Houssaini K.
        • Bernard C.
        • Jirsa V.K.
        The Epileptor Model: A Systematic Mathematical Analysis Linked to the Dynamics of Seizures, Refractory Status Epilepticus, and Depolarization Block.
        eNeuro. 2020; 7
        • El Houssaini K.
        • Ivanov A.I.
        • Bernard C.
        • Jirsa V.K.
        Seizures, refractory status epilepticus, and depolarization block as endogenous brain activities.
        Phys Rev E Stat Nonlin Soft Matter Phys. 2015; 91010701
        • Falcon M.I.
        • Jirsa V.
        • Solodkin A.
        A new neuroinformatics approach to personalized medicine in neurology: The Virtual Brain.
        Curr Opin Neurol. 2016; 29: 429-436
        • Grossman N.
        • Bono D.
        • Dedic N.
        • Kodandaramaiah S.B.
        • Rudenko A.
        • Suk H.J.
        • et al.
        Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields.
        Cell. 2017; 169: e1016
        • Hashemi M.
        • Vattikonda A.N.
        • Sip V.
        • Guye M.
        • Bartolomei F.
        • Woodman M.M.
        • et al.
        The Bayesian Virtual Epileptic Patient: A probabilistic framework designed to infer the spatial map of epileptogenicity in a personalized large-scale brain model of epilepsy spread.
        Neuroimage. 2020; 217116839
        • Hutson T.
        • Pizarro D.
        • Pati S.
        • Iasemidis L.D.
        Predictability and Resetting in a Case of Convulsive Status Epilepticus.
        Front Neurol. 2018; 9: 172
        • Jha J.
        • Hashemi M.
        • Vattikonda A.N.
        • Wang H.
        • Jirsa V.
        Fully Bayesian estimation of virtual brain parameters with self-tuning Hamiltonian Monte Carlo.
        Mach Learn: Sci Technol. 2022; 3035016
        • Jirsa V.K.
        • Stacey W.C.
        • Quilichini P.P.
        • Ivanov A.I.
        • Bernard C.
        On the nature of seizure dynamics.
        Brain. 2014; 137: 2210-2230
        • Jirsa V.K.
        • Proix T.
        • Perdikis D.
        • Woodman M.M.
        • Wang H.
        • Gonzalez-Martinez J.
        • et al.
        The Virtual Epileptic Patient: Individualized whole-brain models of epilepsy spread.
        Neuroimage. 2017; 145: 377-388
        • Makhalova J.
        • Medina Villalon S.
        • Wang H.
        • Giusiano B.
        • Woodman M.
        • Benar C.
        • et al.
        Virtual epileptic patient brain modeling: Relationships with seizure onset and surgical outcome.
        Epilepsia. 2022; 63: 1942-1955
        • Naze S.
        • Bernard C.
        • Jirsa V.
        Computational modeling of seizure dynamics using coupled neuronal networks: factors shaping epileptiform activity.
        PLoS Comput Biol. 2015; 11: e1004209
        • Proix T.
        • Bartolomei F.
        • Guye M.
        • Jirsa V.K.
        Individual brain structure and modelling predict seizure propagation.
        Brain. 2017; 140: 641-654
        • Trinka E.
        • Cock H.
        • Hesdorffer D.
        • Rossetti A.O.
        • Scheffer I.E.
        • Shinnar S.
        • et al.
        A definition and classification of status epilepticus–Report of the ILAE Task Force on Classification of Status Epilepticus.
        Epilepsia. 2015; 56: 1515-1523
        • Vattikonda A.N.
        • Hashemi M.
        • Sip V.
        • Woodman M.M.
        • Bartolomei F.
        • Jirsa V.K.
        Identifying spatio-temporal seizure propagation patterns in epilepsy using Bayesian inference.
        Commun Biol. 2021; 4: 1244
        • Wang H.E.
        • Scholly J.
        • Triebkorn P.
        • Sip V.
        • Medina Villalon S.
        • Woodman M.M.
        • et al.
        VEP atlas: An anatomic and functional human brain atlas dedicated to epilepsy patients.
        J Neurosci Methods. 2021; 348108983
      1. Wang HE, Woodman M, Triebkorn P, Lemarechal J-D, Jha J, Dollomaja B, et al. Virtual Epileptic Patient (VEP): Data-driven probabilistic personalized brain modeling in drug-resistant epilepsy; 2022. https://doi.org/10.1101/2022.01.19.22269404.