Advertisement
Review| Volume 142, 109169, May 2023

Download started.

Ok

Processing speed in temporal lobe epilepsy. A scoping review

      Highlights

      • The different processing speed terms reflect the different stages of the process.
      • Paper-and-pencil tests can distinguish process components.
      • Computerised tests can provide accurate measures of processing speed.
      • Epileptic discharges, seizures, and AEDs can affect processing speed.
      • Impaired processing speed is a specific feature of TLE phenotype.

      Abstract

      Background

      Impaired processing speed (PS) can affect patients with temporal lobe epilepsy (TLE). However, it is usually considered a nonspecific clinical feature and is not measured, but this raises lexical and methodological problems. This review aims to evaluate the existing terminology and assessment methods of PS in patients with TLE.

      Methods

      A scoping review was conducted based on the extended guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis. The electronic literature search was conducted on Medline-PubMed, American Psychological Association-PsycINFO, Elton Bryson Stephens Company, and Google Scholar, using the keywords “temporal lobe epilepsy” and “speed” or “slowing” plus “processing,” “cognitive,” “psychomotor,” or “mental.” Peer-reviewed articles published before December 2022 were analyzed if they were in English, including patients older than 14 years and at least one neuropsychological measure, reported original research focused on PS and had the selected keywords in the title, keywords, and abstract.

      Results

      Seven articles published between December 2004 and September 2021 were selected. The terms “processing speed,” “psychomotor speed,” and “information processing speed,” based on similar theoretical constructs, were the most frequently used. Assessment methods included non-computerized or paper-and-pencil tests (WAIS-III Digit Symbol and Symbol Search subtests, Purdue Pegboard and Grooved Pegboard Tests, Trail Making Test and Stroop Color-Word Test) and computerized tests (Sternberg Memory Scanning Test, Pattern Comparison Processing Speed, Computerized Visual Searching). In some studies, impairment was associated with white and gray matter damage in the brain, independent of clinical and treatment variables.

      Conclusion

      Clinical research on TLE has focused inconsistently on PS. Different evaluation terms and methods have been used while referring to similar theoretical constructs. These findings highlight a gap between the clinical importance of PS and its assessment. Studies are needed to share terms and tools among clinical centers and clarify the position of PS in the TLE phenotype.

      Keywords

      Abbreviations:

      AED (antiepileptic drug), BECTS (Benign epilepsy with center-temporal spikes), FLE (frontal lobe epilepsy), PRISMA-ScR (Preferred Reporting Items of Systematic Reviews and meta-Analysis-Extension for Scoping Review), PS (processing speed), TLE (temporal lobe epilepsy), TMT (Tral making Test)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Epilepsy & Behavior
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hermann B.
        • Seidenberg M.
        • Bell B.
        • Rutecki P.
        • Sheth R.
        • Ruggles K.
        • et al.
        The neurodevelopmental impact of childhood-onset temporal lobe epilepsy on brain structure and function.
        Epilepsia. 2002; 43: 1062-1071https://doi.org/10.1046/j.1528- 1157.2002.49901.x
        • Clusmann H.
        • Schramm J.
        • Kral T.
        • Helmstaedter C.
        • Ostertun B.
        • Fimmers R.
        • et al.
        Prognostic factors and outcome after different types of resection for temporal lobe epilepsy.
        J Neurosurg. 2002; 97: 1131-1141https://doi.org/10.3171/jns.2002.97.5.1131
        • Rausch R.
        • Kraemer S.
        • Pietras C.J.
        • Le M.
        • Vickrey B.G.
        • Passaro E.A.
        Early and late cognitive changes following temporal lobe surgery for epilepsy.
        Neurology. 2003; 60: 951-959https://doi.org/10.1212/01.wnl.0000048203.23766.a1
        • Lah S.
        • Lee T.
        • Grayson S.
        • Miller L.
        Effects of temporal lobe epilepsy on retrograde memory.
        Epilepsia. 2006; 47: 615-625https://doi.org/10.1111/j.1528-1167.2006.00476.x
        • Jones-Gotman M.
        • Smith M.L.
        • Risse G.L.
        • Westerveld M.
        • Swanson S.J.
        • Giovagnoli A.R.
        • et al.
        The contribution of neuropsychology to diagnostic assessment in epilepsy.
        Epilepsy Behav. 2010; 18: 3-12https://doi.org/10.1016/j.yebeh.2010.02.019
        • Bell B.
        • Lin J.J.
        • Seidenberg M.
        • Hermann B.
        The neurobiology of cognitive disorders in temporal lobe epilepsy.
        Nat Rev Neurol. 2011; 7: 154-164https://doi.org/10.1038/nrneurol.2011.3
        • Trenerry M.R.
        • Jack Jr, C.R.
        • Ivnik R.J.
        • Sharbrough F.W.
        • Cascino G.D.
        • Hirschorn K.A.
        • et al.
        MRI hippocampal volumes and memory function before and after temporal lobectomy.
        Neurology. 1993; 43: 1800-1805https://doi.org/10.1212/wnl.43.9.1800
        • Giovagnoli A.R.
        • Avanzini G.
        Learning and memory impairment in patients with temporal lobe epilepsy: relation to the presence, type, and location of brain lesion.
        Epilepsia. 1999; 40: 904-911https://doi.org/10.1111/j.1528-1157.1999.tb00797.x
        • Viskontas I.V.
        • McAndrews M.P.
        • Moscovitch M.
        Remote episodic memory deficits in patients with unilateral temporal lobe epilepsy and excisions.
        J Neurosci. 2000; 20: 5853-5857https://doi.org/10.1523/JNEUROSCI.20-15-05853.2000
        • McDonald C.R.
        • Ahmadi M.E.
        • Hagler D.J.
        • Tecoma E.S.
        • Iragui V.J.
        • Gharapetian L.
        • et al.
        Diffusion tensorimaging correlates of memory and language impairments intemporal lobe epilepsy.
        Neurology. 2008; 71: 1869-1876https://doi.org/10.1212/01.wnl.0000327824.05348.3b
        • Bell B.D.
        • Hermann B.P.
        • Woodard A.R.
        • Jones J.E.
        • Rutecki P.A.
        • Sheth R.
        • et al.
        Object naming and semantic knowledge in temporal lobe epilepsy.
        Neuropsychology. 2001; 15: 434-443https://doi.org/10.1037/0894-4105.15.4.434
        • Giovagnoli A.R.
        • Erbetta A.
        • Villani F.
        • Avanzini G.
        Semantic memory in partial epilepsy: verbal and non-verbal deficits and neuroanatomical relationships.
        Neuropsychologia. 2005; 43: 1482-1492https://doi.org/10.1016/j.neuropsychologia.2004.12.010
        • Mungas D.
        • Ehlers C.
        • Walton N.
        • McCutchen C.B.
        Verbal learning differences in epileptic patients with left and right temporal lobe foci.
        Epilepsia. 1985; 26: 340-345https://doi.org/10.1111/j.1528 1157.1985.tb05660.x
        • Hermann B.P.
        • Wyler A.R.
        • Richey E.T.
        • Rea J.M.
        Memory function and verbal learning ability in patients with complex partial seizures of temporal lobe origin.
        Epilepsia. 1987; 28: 547-554https://doi.org/10.1111/j.1528-1157.1987.tb03687.x
        • Giovagnoli A.R.
        • Casazza M.
        • Avanzini G.
        Visual learning on a selective reminding procedure and delayed recall in patients with temporal lobe epilepsy.
        Epilepsia. 1995; 36: 704-711https://doi.org/10.1111/j.1528-1157.1995.tb01050.x
        • Weintrob D.
        • Saling M.
        • Berkovic S.
        • Berlangieri S.
        • Reutens D.
        Verbal memory in left temporal lobe epilepsy: Evidence for taskrelated localization.
        Ann Neurol. 2002; 51: 442-447https://doi.org/10.1002/ana.10133
        • Bell B.D.
        • Seidenberg M.
        • Hermann B.P.
        • Douville K.
        Visual and auditory naming in patients with left or bilateral temporal lobe epilepsy.
        Epilepsy Res. 2003; 55: 29-37https://doi.org/10.1016/S0920- 1211(03)00110-4
        • Thivard L.
        • Hombrouck J.
        • du Montcel S.T.
        • Delmaire C.
        • Cohen L.
        • Samson S.
        • et al.
        Productive and perceptive language reorganization in temporal lobe epilepsy.
        Neuroimage. 2005; 24: 841-851https://doi.org/10.1016/j.neuroimage.2004.10.001
        • Powell H.W.
        • Parker G.J.
        • Alexander D.C.
        • Symms M.R.
        • Boulby P.A.
        • Wheeler-Kingshott C.A.
        • et al.
        Abnormalities of language networks in temporal lobe epilepsy.
        Neuroimage. 2007; 36: 209-221https://doi.org/10.1016/j.neuroimage.2007.02.028
        • Balter S.
        • Lin G.
        • Leyden K.M.
        • Paul B.M.
        • McDonald C.R.
        Neuroimaging correlates of language network impairment and reorganization in temporal lobe epilepsy.
        Brain Lang. 2019; 193: 31-44https://doi.org/10.1016/j.bandl.2016.06.002
        • Giovagnoli A.R.
        • Franceschetti S.
        • Reati F.
        • Parente A.
        • Maccagnano C.
        • Villani F.
        • et al.
        Theory of mind in frontal and temporal lobe epilepsy: cognitive and neural aspects.
        Epilepsia. 2011; 52: 1995-2002https://doi.org/10.1111/j.1528-1167.2011.03215.x
        • Stewart E.
        • Catroppa C.
        • Lah S.
        Theory of mind in patients with epilepsy: a systematic review and meta-analysis.
        Neuropsychol Rev. 2016; 26: 3-24https://doi.org/10.1007/s11065-015-9313-x
        • Drake M.
        • Allegri R.F.
        • Thomson A.
        Executive cognitive alteration of prefrontal type in patients with mesial temporal lobe epilepsy.
        Medicina (Buenos Aires). 2000; 60: 453-456
        • Giovagnoli A.R.
        Relation of sorting impairment to hippocampal damage in temporal lobe epilepsy.
        Neuropsychologia. 2001; 39: 140-150https://doi.org/10.1016/S0028-3932(00)00104-4
        • Dodrill C.B.
        Neuropsychological effects of seizures.
        Epilepsy Behav. 2004; 5: 21-24https://doi.org/10.1016/j.yebeh.2003.11.004
        • Coyle T.R.
        • Pillow D.R.
        • Snyder A.C.
        • Kochunov P.
        Processing speed mediates the development of general intelligence (g) in adolescence.
        Psychol Sci. 2011; 22: 1265-1269https://doi.org/10.1177/0956797611418243
        • Carroll J.B.
        Human cognitive abilities: A survey of factor-analytic studies.
        Cambridge University Press, New York1993
        • Horn J.L.
        • Noll J.
        A system for understanding cognitive capabilities: A theory and the evidence on which it is based.
        in: Detterman Current topics in human intelligence. Theories, Tests, and Issues. Guilford Press, New York1994: 151-203
        • Danthiir V.
        • Roberts R.D.
        • Schulze R.
        • Wilhelm O.
        Mental speed: on frameworks, paradigms, and a platform for the future.
        in: Wilhelm O. Engle R.W. Understanding and measuring intelligence. Sage, London2005: 24-46
        • Poggel D.A.
        • Strasburger H.
        Visual perception in space and time - Mapping the visual field of temporal resolution.
        Acta Neurobiol Exp. 2004; 64: 427-436
        • Rypma B.
        • Prabhakaran V.
        When less is more and when more is more: The mediating roles of capacity and speed in brain-behavior efficiency.
        Intelligence. 2009; 37: 207-222https://doi.org/10.1016/j.intell.2008.12.004
        • Ball K.K.
        • Vance D.E.
        Everyday life applications and rehabilitation of processing speed deficits: Ageing as a model for clinical populations.
        in: DeLuca J. Information processing speed in clinical populations. Taylor & Francis, New York, London2007: 244-261
        • Costa S.L.
        • Genova H.M.
        • DeLuca J.
        • Chiaravalloti N.D.
        Information processing speed in multiple sclerosis: Past, present, and future.
        Mult Scler. 2017; 23: 772-789https://doi.org/10.1177/1352458516645869
        • Coyle T.R.
        A differential–developmental model (DDM): Mental speed, attention lapses, and general intelligence (G).
        J Intel. 2017; 5: 1-15https://doi.org/10.3390/jintelligence5020025
        • Salthouse T.A.
        Aging and measures of processing speed.
        Biol Psychol. 2000; 54: 35-54https://doi.org/10.1016/S0301-0511(00)00052-1
        • Salthouse T.A.
        The processing-speed theory of adult age differences in cognition.
        Psychol Rev. 1996; 103: 403-428https://doi.org/10.1037/0033-295X.103.3.403
        • Kalmer J.H.
        • Chiaravallotti N.D.
        Information processing speed in multiple sclerosis: a primary deficit?.
        in: DeLuca J. Lamnar J.H. Information processing speed in clinical population. Taylor and Francis, New York2008
        • Kail R.
        Developmental change in speed of processing during chilhood and adolescence.
        Psychol Bull. 1991; 109: 490-501https://doi.org/10.1037/0033-2909.109.3.490
        • Rindermann H.
        • Neubauer A.
        Processing speed, intelligence, creativity and school performance: Testing of causal hypotheses using structural equation models.
        Intelligence. 2004; 32: 573https://doi.org/10.1016/j.intell.2004.06.005
        • Kail R.
        • Hall L.K.
        Sources of developmental change in children’s word-problem performance.
        J Educat Psychol. 1999; 91: 660-668https://doi.org/10.1037/0022-0663.91.4.660
        • Kail R.
        Longitudinal evidence that increases in processing speed and working memory enhance children’s reasoning.
        Psychol Sci. 2007; 18: 312-313https://doi.org/10.1111/j.1467- 9280.2007.01895.x
        • Salthouse T.A.
        Influence of processing speed on adult age differences in working memory.
        Acta Psychol. 1992; 79: 155-170https://doi.org/10.1016/0001-6918(92)90030-H
        • Salthouse T.A.
        • Toth J.
        • Daniels K.
        • Parks C.
        • Pak R.
        • Wolbrette M.
        • et al.
        Effects of aging on efficiency of task switching in a variant of the trail making test.
        Neuropsychology. 2000; 14: 102https://doi.org/10.1037/0894-4105.14.1.102
        • Finkel D.
        • Reynolds C.A.
        • McArdle J.J.
        • Pedersen N.L.
        Age changes in processing speed as a leading indicator of cognitive aging.
        Psychol Aging. 2007; 22: 558-568https://doi.org/10.1037/0882-7974.22.3.558
        • Rypma B.
        • Berger J.S.
        • Prabhakaran V.
        • Bly B.M.
        • Kimberg D.Y.
        • Biswal B.B.
        • et al.
        Neural correlates of cognitive efficiency.
        Neuroimage. 2006; 33: 969-979https://doi.org/10.1016/j.neuroimage.2006.05.065
        • Forn C.
        • Ripollés P.
        • Cruz-Gómez A.J.
        • Belenguer A.
        • González-Torre J.A.
        • Avila C.
        Task-load manipulation in the Symbol Digit Modalities Test: an alternative measure of information processing speed.
        Brain Cogn. 2013; 82: 152-160https://doi.org/10.1016/j.bandc.2013.04.003
        • Widjaja E.
        • Kis A.
        • Go C.
        • Raybaud C.
        • Snead O.C.
        • Smith M.L.
        Abnormal white matter on diffusion tensor imaging in children with new-onset seizures.
        Epilepsy Res. 2013; 104: 105-111https://doi.org/10.1016/j.eplepsyres.2012.10.007
        • Gross D.W.
        Diffusion tensor imaging in temporal lobe epilepsy.
        Epilepsia. 2011; 52: 32-34https://doi.org/10.1111/j.1528-1167.2011.03149.x
        • Deleo F.
        • Thom M.
        • Concha L.
        • Bernasconi A.
        • Bernhardt B.C.
        • Bernasconi N.
        Histological and MRI markers of white matter damage in focal epilepsy.
        Epilepsy Res. 2018; 140: 29-38https://doi.org/10.1016/j.eplepsyres.2017.11.010
      1. Kimiwada T, Juhasz C, Makki M, Muzik O, Chugani DC, Asano E, et al. Hippocampal and thalamic diffusion abnormalities in children with temporal lobe epilepsy. Epilepsia 2006;47:167–75. doi: 0.1111/j.1528-1167.2006.00383.x.

      2. Govindan RM, Makki MI, Sundaram SK, Juhasz C, Chugani HT. Diffusion tensor analysis of temporal and extra-temporal lobe tracts in temporal lobe epilepsy. Epilepsy Res 2008;80:30–41. doi: 0.1016/j.eplepsyres.2008.03.011.

        • Lee J.H.
        • Chung C.K.
        • Song I.C.
        • Chang K.H.
        • Kim H.J.
        Limited utility of interictal apparent diffusion coefficient in the evaluation of hippocampal sclerosis.
        Acta Neurol Scand. 2004; 110: 53-58https://doi.org/10.1111/j.1600-0404.2004.00261.x
        • Nilsson D.
        • Go C.
        • Rutka J.T.
        • Rydenhag B.
        • Mabbott D.J.
        • Snead O.C.
        • et al.
        Bilateral diffusion tensor abnormalities of temporal lobe and cingulate gyrus white matter in children with temporal lobe epilepsy.
        Epilepsy Res. 2008; 81: 128-135https://doi.org/10.1016/j.eplepsyres.2008.05.002
        • Kalvainen R.
        • Aika M.
        • Helkala E.L.
        • Mervaala E.
        • Riekkinen P.J.
        Memory and attention in newly diagnosed epileptic seizure disorder.
        Seizure. 1992; 1: 255-262
        • Hessen E.
        • Lossius M.I.
        • Reinvang I.
        • Gjerstad L.
        Influence of major antiepileptic drugs on attention, reaction time, and speed of information processing: results from a randomized, double-blind, placebo-controlled withdrawal study of seizure-free epilepsy patients receiving monotherapy.
        Epilepsia. 2006; 47: 2038-2045
        • Ijff D.M.
        • van Veenendaal T.M.
        • Majoie H.J.
        • de Louw A.J.
        • Jansen J.F.
        • Aldenkamp A.P.
        Cognitive Effects of lacosamide as adjunctive therapy in refractory epilepsy.
        Acta Neurol Scand. 2015; 131: 347-354
        • Peters M.D.J.
        • Godfrey C.M.
        • Khalil H.
        • McInerney P.
        • Parker D.
        • Soares C.B.
        Guidance for Conducting Systematic Scoping Reviews.
        Int J Evidence-Based Healthcare. 2015; 13: 141-216https://doi.org/10.1097/XEB.0000000000000050
        • Munn Z.
        • Peters M.
        • Stern C.
        • Tufanaru C.
        • McArthur A.
        • Aromataris E.
        Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach.
        BMC Med Res Method. 2018; 18: 143https://doi.org/10.1186/s12874-018-0611-x
        • Arksey H.
        • O’Malley L.
        Scoping studies: towards a methodological framework.
        Int J Soc Res Methodol. 2005; 8: 19-32https://doi.org/10.1080/1364557032000119616
        • Tricco A.C.
        • Lillie E.
        • Zarin W.
        • O'Brien K.K.
        • Colquhoun H.
        • Levac D.
        • et al.
        PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation.
        Ann Int Med. 2018; 169: 467-473https://doi.org/10.7326/M18-0850
        • Dow C.
        • Seidenberg M.
        • Hermann B.
        Relationship between information processing speed in temporal lobe epilepsy and white matter volume.
        Epilepsy Behav. 2004; 5: 919-925https://doi.org/10.1016/j.yebeh.2004.08.007
        • Alexander R.P.
        • Concha L.
        • Snyder T.J.
        • Beaulieu C.
        • Gross D.W.
        Correlations between limbic white matter and cognitive function in temporal-lobe epilepsy, preliminary findings.
        Front Aging Neurosci. 2014; 6: 142https://doi.org/10.3389/fnagi.2014.00142
        • Hwang G.
        • Dabbs K.
        • Conant L.
        • Nair V.A.
        • Mathis J.
        • Almane D.N.
        • et al.
        Cognitive slowing and its underlying neurobiology in temporal lobe epilepsy.
        Cortex. 2019; 117: 41-52https://doi.org/10.1016/j.cortex.2019.02.022
        • McMillan T.M.
        • Mason C.A.
        • Seidenberg M.
        • Jones J.
        • Hermann B.
        The impact of processing speed on cognition in temporal lobe epilepsy.
        Epilepsy Behav. 2021; 122108203https://doi.org/10.1016/j.yebeh.2021.108203
        • Grevers E.
        • Breuer L.E.
        • Ijff D.M.
        • Aldenkamp A.P.
        Mental slowing in relation to epilepsy and antiepileptic medication.
        Acta Neurol Scand. 2016; 134: 116-122https://doi.org/10.1111/ane.12517
        • Piazzini A.
        • Turner K.
        • Chifari R.
        • Morabito A.
        • Canger R.
        • Canevini M.P.
        Attention and psychomotor speed decline in patients with temporal lobe epilepsy: A longitudinal study.
        Epilepsy Res. 2006; 72: 89-96https://doi.org/10.1016/j.eplepsyres.2006.04.004
        • Sung C.
        • Jones J.E.
        • Jackson D.C.
        • Jackson D.C.
        • Chan Y.C.
        • Chan F.
        • et al.
        Age-accelerated psychomotor slowing in temporal lobe epilepsy.
        Epilepsy Res. 2013; 103: 231-236https://doi.org/10.1016/j.eplepsyres.2012.08.011
        • Berg A.T.
        • Langfitt J.T.
        • Testa F.M.
        • Levy S.R.
        • DiMario F.
        • Westerveld M.
        • et al.
        Residual cognitive effects of uncomplicated idiopathic and cryptogenic epilepsy.
        Epilepsy Behav. 2008; 13: 614-619https://doi.org/10.1016/j.yebeh.2008.07.007
        • Gottlieb L.
        • Zelko F.A.
        • Kim D.S.
        • Nordli D.R.
        Cognitive proficiency in pediatric epilepsy.
        Epilepsy Behav. 2012; 23: 146-151https://doi.org/10.1016/j.yebeh.2011.10.024
        • Lopes A.F.
        • Simoes M.R.
        • Monteiro J.P.
        • Fonseca M.J.
        • Martins C.
        • Ventosa L.
        • et al.
        Intellectual functioning in children with epilepsy: frontal lobe epilepsy, childhood absence epilepsy and benign epilepsy with centro-temporal spikes.
        Seizure. 2013; 22: 886-892https://doi.org/10.1016/j.seizure.2013.08.002
        • Ciumas C.
        • Saignavongs M.
        • Ilski F.
        • Herbillon V.
        • Laurent A.
        • Lothe A.
        • et al.
        White matter development in children with benign childhood epilepsy with centro-temporal spikes.
        Brain. 2014; 137: 1095-1106https://doi.org/10.1093/brain/awu039
        • Exner C.
        • Boucsein K.
        • Lange C.
        • Winter H.
        • Weniger G.
        • Steinhoff B.J.
        • et al.
        Neuropsychological performance in frontal lobe epilepsy.
        Seizure. 2002; 11: 20-32https://doi.org/10.1053/seiz.2001.0572
        • Boelen S.
        • Nieuwenhuis S.
        • Steenbeek L.
        • Veldwijk H.
        • Van De Ven-Verest M.
        • Tan I.Y.
        • et al.
        Effect of epilepsy on psychomotor function in children with uncomplicated epilepsy.
        Dev Med Child Neurol. 2005; 47: 546-550https://doi.org/10.1111/j.1469-8749.2005.tb01189.x
        • Hermann B.
        • Jones J.
        • Sheth R.
        • Dow C.
        • Koehn M.
        • Seidenberg M.
        Children with new-onset epilepsy: neuropsychological status and brain structure.
        Brain. 2006; 129: 2609-2619https://doi.org/10.1093/brain/awl196
        • Garcia-Ramos C.
        • Dabbs K.
        • Meyerand M.E.
        • Prabhakaran V.
        • Hsu D.
        • Jones J.
        • et al.
        Psychomotor slowing is associated with anomalies in baseline and prospective large scale neural networks in youth with epilepsy.
        Neuroimage Clin. 2018; 19: 222-231https://doi.org/10.1016/j.nicl.2018.04.020
        • Helmstaedter C.
        • Durch P.
        • Hoppe C.
        • Witt J.A.
        Is the computerized assessment of psychomotor speed more sensitive to cognitive effects of antiepileptic pharmacotherapy than tests with a focus on higher-order cognitive processing? Implications for the choice of sensitive test parameters.
        Eur Neuropsychopharmacol. 2019; 29: 1273-1281https://doi.org/10.1016/j.euroneuro.2019.09.010
        • Cheng D.
        • Yan X.
        • Gao Z.
        • Xu K.
        • Zhou X.
        • Chen Q.
        Common and distinctive patterns of cognitive dysfunction in children with benign epilepsy syndromes.
        Pediatr Neurol. 2017; 72: 36-41https://doi.org/10.1016/j.pediatrneurol.2016.12.005
        • Bobholz S.A.
        • Dabbs K.
        • Almane D.
        • Jones J.E.
        • Hsu D.E.
        • Stafstrom C.E.
        • et al.
        Neurobiological substrates of processing speed in childhood epilepsy.
        Brain Imaging Behav. 2019; 13: 1719-1725https://doi.org/10.1007/s11682-018-0005-z
        • Hessen E.
        • Lossius M.I.
        • Reinvang I.
        • Gjerstad L.
        Influence of major antiepileptic drugs on attention, reaction time, and speed of information processing: results from a randomized, double blind, placebocontrolled withdrawal study of seizure free epilepsy patients receiving monotherapy.
        Epilepsia. 2006; 47: 2038-2045https://doi.org/10.1111/j.1528-167.2006.00805.x
        • McDonald C.R.
        • Delis D.C.
        • Norman M.A.
        • Tecoma E.S.
        • Iragui-Madozi V.I.
        Is impairment in set- shifting specific to frontal-lobe dysfunction? Evidence from patients with frontal-lobe or temporal-lobe epilepsy.
        JINS. 2005; 11: 477-481https://doi.org/10.1017/S1355617705050484
        • Sternberg S.
        High speed scanning in human memory.
        Science. 1966; 153: 652-654https://doi.org/10.1126/science.153.3736.652
        • Giovagnoli A.R.
        • Del Pesce M.
        • Mascheroni S.
        • Sinomcelli M.
        • Laiacona M.
        • Capitani E.
        Trail making test: normative values from 287 normal adult controls.
        Ital J Neuro Sci. 1996; 17: 305-309https://doi.org/10.1007/BF01997792