Advertisement

Alteration of hippocampal Egr3, GABA A receptors, Il-1β, Il6 and Ccl3 expression in audiogenic tremor mice after seizure

Published:November 07, 2022DOI:https://doi.org/10.1016/j.yebeh.2022.108962

      Highlights

      • Hippocampal proinflammatory cytokines and GABA A receptors were altered after a seizure.
      • Overexpression of Ccl3 mRNA was observed in the hippocampus of naive tremor mice.
      • Hippocampal Il-1β and Ccl3 expression were downregulated in stimulated tremor mice.
      • Low expression of Egr3, Gabra1, and Gabra4 mRNA were detected in naive tremor mice.
      • Egr3, Gabra1, and Gabra4 expression increased in the hippocampus of stimulated mice.

      Abstract

      Neuroinflammation plays a protective role in the brain; however, in neurological diseases such as epilepsy, overactivated neuroinflammation, along with overexpression of inflammatory mediators, can cause neuronal tissue damage, which can trigger seizures due to loss of ionic or neurotransmitter homeostasis. Therefore, we aimed to evaluate mRNA expression levels of proinflammatory cytokines, early growth response factor 3 (Egr3), and GABA A receptors in the hippocampus of naive audiogenic mutant tremor mice, and stimulated tremor mice after a seizure. Gene expression of Il-1β, Il-6, Tnf-α, Ccl2, Ccl3, Egr3, Gabra1, and Gabra4 from hippocampal samples of naive and stimulated tremor mice were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Relative to resistant mice, Ccl3 gene expression was increased and Il6 was decreased in the hippocampus of naïve tremor mice. Thirty minutes after a seizure, Ccl3 and Il-1β mRNA expression were decreased (p < 0.0001; p = 0.0034, respectively) while Il6 was increased (p = 0.0052) in stimulated tremor mice, relative to naïve animals. In addition, Egr3, Gabra1, and Gabra4 mRNA expression was decreased in the hippocampus of naive tremor mice, relative to resistant mice, which increased 30 minutes after a seizure (p = 0.0496; p = 0.0447, and p = 0.0011, respectively), relative to naïve animals. In conclusion, overexpression of Ccl3 in the hippocampus of naive tremor mice, followed by downregulation soon after seizure in stimulated tremor mice, could be involved in changes in the blood-brain barrier (BBB) permeability in epilepsy. Il-1β may be involved in hippocampal downregulation of GABA A receptors of naive tremor mice, characterizing an important mechanism in audiogenic seizures triggering. Hippocampal alterations of proinflammatory cytokines, Egr3, and GABA A receptors in tremor mice reinforce them as an alternative tool to modeling temporal lobe epilepsy.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Epilepsy & Behavior
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Vezzani A.
        • Balosso S.
        • Ravizza T.
        Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy.
        Nat Rev Neurol. 2019; 15: 459-472https://doi.org/10.1038/s41582-019-0217-x
        • Soltani Khaboushan A.
        • Yazdanpanah N.
        • Rezaei N.
        Neuroinflammation and proinflammatory cytokines in epileptogenesis.
        Mol Neurobiol. 2022; 59: 1724-1743https://doi.org/10.1007/s12035-022-02725-6
        • de Souza Bernardino T.C.
        • Teixeira A.L.
        • Miranda A.S.
        • Guidine P.M.
        • Rezende G.
        • Doretto M.C.
        • et al.
        Wistar Audiogenic Rats (WAR) exhibit altered levels of cytokines and brain-derived neurotrophic factor following audiogenic seizures.
        Neurosci Lett. 2015; 597: 154-158
        • Murashima Y.L.
        • Suzuki J.
        • Yoshii M.
        Role of cytokines during epileptogenesis and in the transition from the interictal to the ictal state in the epileptic mutant EL mouse.
        Gene Regul Syst Bio. 2008; 2: 267-274
        • Kołosowska K.
        • Maciejak P.
        • Szyndler J.
        • Turzyńska D.
        • Sobolewska A.
        • Płaźnik A.
        The role of interleukin-1β in the pentylenetetrazole-induced kindling of seizures, in the rat hippocampus.
        Eur J Pharmacol. 2014; 731: 31-37https://doi.org/10.1016/j.ejphar.2014.03.008
        • Fabene P.F.
        • Bramanti P.
        • Constantin G.
        The emerging role for chemokines in epilepsy.
        J Neuroimmunol. 2010; 224: 22-27https://doi.org/10.1016/j.jneuroim.2010.05.016
        • Cerri C.
        • Caleo M.
        • Bozzi Y.
        Chemokines as new inflammatory players in the pathogenesis of epilepsy.
        Epilepsy Res. 2017; 136: 77-83https://doi.org/10.1016/j.eplepsyres.2017.07.016
        • Lee T.-S.
        • Mane S.
        • Eid T.
        • Zhao H.
        • Lin A.
        • Guan Z.
        • et al.
        Gene expression in temporal lobe epilepsy is consistent with increased release of glutamate by astrocytes.
        Mol Med. 2007; 13: 1-13
        • Roseti C.
        • van Vliet E.A.
        • Cifelli P.
        • Ruffolo G.
        • Baayen J.C.
        • Di Castro M.A.
        • et al.
        GABAA currents are decreased by IL-1β in epileptogenic tissue of patients with temporal lobe epilepsy: implications for ictogenesis.
        Neurobiol Dis. 2015; 82: 311-320
      1. Brooks-Kayal AR, Russek SJ. Regulation of GABAA Receptor Gene Expression and Epilepsy. Jasper’s Basic Mech. Epilepsies. 4th ed., National Center for Biotechnology Information (US); 2012.

        • Garcia-Gomes M. de S.A.
        • Zanatto D.A.
        • Galvis-Alonso O.Y.
        • Mejia J.
        • Antiorio A.T.F.B.
        • Yamamoto P.K.
        • et al.
        Behavioral and neurochemical characterization of the spontaneous mutation tremor, a new mouse model of audiogenic seizures.
        Epilepsy Behav. 2020; 105: 106945
        • Singh T.
        • Mishra A.
        • Goel R.K.
        PTZ kindling model for epileptogenesis, refractory epilepsy, and associated comorbidities: relevance and reliability.
        Metab Brain Dis. 2021; 36: 1573-1590https://doi.org/10.1007/s11011-021-00823-3
        • Walrave L.
        • Maes K.
        • Coppens J.
        • Bentea E.
        • Van Eeckhaut A.
        • Massie A.
        • et al.
        Validation of the 6 Hz refractory seizure mouse model for intracerebroventricularly administered compounds.
        Epilepsy Res. 2015; 115: 67-72
        • Gorter J.A.
        • van Vliet E.A.
        • Lopes da Silva F.H.
        Which insights have we gained from the kindling and post-status epilepticus models?.
        J Neurosci Methods. 2016; 260: 96-108https://doi.org/10.1016/j.jneumeth.2015.03.025
        • Marescaux C.
        • Vergnes M.
        • Kiesmann M.
        • Depaulis A.
        • Micheletti G.
        • Warter J.M.
        Kindling of audiogenic seizures in Wistar rats: an EEG study.
        Exp Neurol. 1987; 97: 160-168https://doi.org/10.1016/0014-4886(87)90290-1
        • Garcia-Cairasco N.
        • Wakamatsu H.
        • Oliveira J.A.
        • Gomes E.L.
        • Del Bel E.A.
        • Mello L.E.
        Neuroethological and morphological (Neo-Timm staining) correlates of limbic recruitment during the development of audiogenic kindling in seizure susceptible Wistar rats.
        Epilepsy Res. 1996; 26: 177-192https://doi.org/10.1016/s0920-1211(96)00050-2
        • Galvis-Alonso O.Y.
        • Cortes De Oliveira J.A.
        • Garcia-Cairasco N.
        Limbic epileptogenicity, cell loss and axonal reorganization induced by audiogenic and amygdala kindling in wistar audiogenic rats (WAR strain).
        Neuroscience. 2004; 125: 787-802https://doi.org/10.1016/j.neuroscience.2004.01.042
      2. Guide for the Care and Use of Laboratory Animals. 8th ed. Washington, D.C.: National Academies Press; 2011. doi: 10.17226/12910.

        • Mesquita L.P.
        • Costa R.C.
        • Zanatto D.A.
        • Bruhn F.R.P.
        • Mesquita L.L.R.
        • Lara M.C.C.S.H.
        • et al.
        Equine herpesvirus 1 elicits a strong pro-inflammatory response in the brain of mice.
        J Gen Virol. 2021; 102https://doi.org/10.1099/jgv.0.001556
        • Livak K.J.
        • Schmittgen T.D.
        Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.
        Methods. 2001; 25: 402-408https://doi.org/10.1006/meth.2001.1262
        • Steibel J.P.
        • Poletto R.
        • Coussens P.M.
        • Rosa G.J.M.
        A powerful and flexible linear mixed model framework for the analysis of relative quantification RT-PCR data.
        Genomics. 2009; 94: 146-152https://doi.org/10.1016/j.ygeno.2009.04.008
        • Marini H.
        • Altavilla D.
        • Bellomo M.
        • Adamo E.B.
        • Marini R.
        • Laureanti F.
        • et al.
        Modulation of IL-1 beta gene expression by lipid peroxidation inhibition after kainic acid-induced rat brain injury.
        Exp Neurol. 2004; 188: 178-186https://doi.org/10.1016/j.expneurol.2004.03.023
        • Dhote F.
        • Peinnequin A.
        • Carpentier P.
        • Baille V.
        • Delacour C.
        • Foquin A.
        • et al.
        Prolonged inflammatory gene response following soman-induced seizures in mice.
        Toxicology. 2007; 238: 166-176
        • Johnson E.A.
        • Kan R.K.
        The acute phase response and soman-induced status epilepticus: temporal, regional and cellular changes in rat brain cytokine concentrations.
        J Neuroinflammation. 2010; 7: 40https://doi.org/10.1186/1742-2094-7-40
        • Zhu G.
        • Okada M.
        • Yoshida S.
        • Mori F.
        • Ueno S.
        • Wakabayashi K.
        • et al.
        Effects of interleukin-1beta on hippocampal glutamate and GABA releases associated with Ca2+-induced Ca2+ releasing systems.
        Epilepsy Res. 2006; 71: 107-116https://doi.org/10.1016/j.eplepsyres.2006.05.017
        • Wang S.
        • Cheng Q.
        • Malik S.
        • Yang J.
        Interleukin-1beta inhibits gamma-aminobutyric acid type A (GABA(A)) receptor current in cultured hippocampal neurons.
        J Pharmacol Exp Ther. 2000; 292: 497-504
        • López-López D.
        • Gómez-Nieto R.
        • Herrero-Turrión M.J.
        • García-Cairasco N.
        • Sánchez-Benito D.
        • Ludeña M.D.
        • et al.
        Overexpression of the immediate-early genes Egr1, Egr2, and Egr3 in two strains of rodents susceptible to audiogenic seizures.
        Epilepsy Behav. 2017; 71: 226-237
        • Xu J.H.
        • Long L.
        • Tang Y.C.
        • Zhang J.T.
        • Hut H.T.
        • Tang F.R.
        CCR3, CCR2A and macrophage inflammatory protein (MIP)-1a, monocyte chemotactic protein-1 (MCP-1) in the mouse hippocampus during and after pilocarpine-induced status epilepticus (PISE).
        Neuropathol Appl Neurobiol. 2009; 35: 496-514https://doi.org/10.1111/j.1365-2990.2009.01022.x
        • Guzik-Kornacka A.
        • Sliwa A.
        • Plucinska G.
        • Lukasiuk K.
        Status epilepticus evokes prolonged increase in the expression of CCL3 and CCL4 mRNA and protein in the rat brain.
        Acta Neurobiol Exp (Wars). 2011; 71: 193-207
        • Nemeth D.P.
        • Quan N.
        • Burstyn-Cohen T.
        • Quan N.
        Modulation of Neural Networks by Interleukin-1.
        Brain Plast (Amsterdam, Netherlands). 2021; 7: 17-32
        • de Deus J.L.
        • Amorim M.R.
        • de Barcellos Filho P.C.G.
        • de Oliveira J.A.C.
        • Batalhão M.E.
        • Garcia-Cairasco N.
        • et al.
        Inflammatory markers in the hippocampus after audiogenic kindling.
        Neurosci Lett. 2020; 721: 134830https://doi.org/10.1016/j.neulet.2020.134830
        • De Sarro G.
        • Russo E.
        • Ferreri G.
        • Giuseppe B.
        • Flocco M.A.
        • Di Paola E.D.
        • et al.
        Seizure susceptibility to various convulsant stimuli of knockout interleukin-6 mice.
        Pharmacol Biochem Behav. 2004; 77: 761-766
        • Roberts D.S.
        • Raol Y.H.
        • Bandyopadhyay S.
        • Lund I.V.
        • Budreck E.C.
        • Passini M.A.
        • et al.
        Egr3 stimulation of GABRA4 promoter activity as a mechanism for seizure-induced up-regulation of GABA(A) receptor alpha4 subunit expression.
        Proc Natl Acad Sci U S A. 2005; 102: 11894-11899https://doi.org/10.1073/pnas.0501434102