Advertisement

Pentylenetetrazol-induced seizures are followed by a reduction in the multiunitary activity of hippocampal CA1 pyramidal neurons in adult rats

Published:October 21, 2022DOI:https://doi.org/10.1016/j.yebeh.2022.108922

      Highlights

      • Pentylenetetrazol provoked tonic-clonic seizures 1–5 min after treatment.
      • Slow EEG waves (4–7 Hz) in the hippocampal CA1 field increased after PTZ treatment.
      • Fast EEG waves (8–50 Hz) in the CA1 field decreased after PTZ treatment.
      • The MUA of CA1 pyramidal neurons of PTZ-treated rats remained unchanged.
      • MUA was lower in the PTZ group than in Saline controls.

      Abstract

      Pentylenetetrazol (PTZ) blocks the inhibitory action of GABA, triggering a Glu-mediated hyperexcitation of the dendritic spines in hippocampal CA1 pyramidal neurons that leads to the generation of epileptiform seizures. The aim of this work was to determine the effect of PTZ on the electrical activity of the hippocampal pyramidal neurons in male rats. Bipolar electrodes were implanted stereotaxically in the right and left hippocampal CA1 fields of adults, and PTZ (65 mg/kg) was administered i.p. Simultaneous recordings of the field activity and the firing rate (multiunitary activity, MUA) were analyzed at 10, 20, and 30 min post-administration of PTZ. Only rats that presented tonic-clonic seizures during the first 1–5 min after PTZ treatment were included in the study. The recordings of the field activity were analyzed in 4 frequency bands. In both the right and left hippocampal CA1 fields, the relative power corresponding to the slow waves (4–7 Hz) increased, while in the bands 13–30 Hz and 31–50 Hz, it decreased at 10, 20, and 30 min post-PTZ. MUA recordings were analyzed at four levels. The highest levels corresponded to larger amplitudes of the action potentials in the pyramidal neurons. The firing rates of the PTZ-treated rats did not differ from baseline but presented a significant decrement at 10, 20, and 30 min post-PTZ. The decreased firing rate of the hippocampal CA1 pyramidal neurons after PTZ treatment could be associated with plastic changes of dendritic spines along with some microenvironmental adaptations at synaptic level, after neuronal PTZ-mediated hyperexcitation.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Epilepsy & Behavior
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • McCormick D.A.
        • Contreras D.
        On the cellular and network bases of epileptic seizures.
        Annu Rev Physiol. 2001; 63: 815-846https://doi.org/10.1146/annurev.physiol.63.1.815
        • Samokhina E.
        • Samokhin A.
        Neuropathological profile of the pentylenetetrazol (PTZ) kindling model.
        Int J Neurosci. 2018; 128: 1086-1096https://doi.org/10.1080/00207454.2018.1481064
        • Psarropoulou C.
        • Matsokis N.
        • Angelatou F.
        • Kostopoulos G.
        Pentylenetetrazol-induced seizures decrease gamma-aminobutyric acid-mediated recurrent inhibition and enhance adenosine-mediated depression.
        Epilepsia. 1994; 35: 12-19https://doi.org/10.1111/j.1528-1157.1994.tb02906.x
        • Szyndler J.
        • Maciejak P.
        • Kołosowska K.
        • Chmielewska N.
        • Skórzewska A.
        • Daszczuk P.
        • et al.
        Altered expression of GABA-A receptor subunits in the hippocampus of PTZ-kindled rats.
        Pharmacol Rep. 2018; 70: 14-21https://doi.org/10.1016/j.pharep.2017.07.008
        • Flores-Soto M.
        • Romero-Guerrero C.
        • Vázquez-Hernández N.
        • Tejeda-Martínez A.
        • Martín-Amaya-Barajas F.L.
        • Orozco-Suárez S.
        • et al.
        Pentylenetetrazol-induced seizures in adult rats are associated with plastic changes to the dendritic spines on hippocampal CA1 pyramidal neurons.
        Behav Brain Res. 2021; 406: 113198https://doi.org/10.1016/j.bbr.2021.113198
        • Vasil'ev D.S.
        • Tumanova N.L.
        • Lavrent'eva V.V.
        • Starshinova L.A.
        • Zhabko E.P.
        • Lukomskaia N.
        • et al.
        The ability of NMDA glutamate receptor blockers to prevent a pentylenetetrazole kindling in mice and morphological changes in the hippocampus.
        Ross Fiziol Zh Im I M Sechenova. 2013; 99: 1023-1035
        • Molinari F.
        • Cattani A.A.
        • Mdzomba J.B.
        • Aniksztejn L.
        Glutamate transporters control metabotropic glutamate receptors activation to prevent the genesis of paroxysmal burst in the developing hippocampus.
        Neuroscience. 2012; 207: 25-36https://doi.org/10.1016/j.neuroscience.2012.01.036
        • Meldrum B.
        Excitotoxicity and epileptic brain damage.
        Epilepsy Res. 1991; 10: 55-61https://doi.org/10.1016/0920-1211(91)90095-w
        • Rajasekaran K.
        • Joshi S.
        • Kozhemyakin M.
        • Todorovic M.S.
        • Kowalski S.
        • Balint C.
        • et al.
        Receptor trafficking hypothesis revisited: Plasticity of AMPA receptors during established status epilepticus.
        Epilepsia. 2013; 54: 14-16https://doi.org/10.1111/epi.12266
        • Paxinos G.
        • Watson C.
        The rat brain in stereotaxic coordinates.
        2nd ed. Academic Press, USA1986
        • Jiang W.
        • Wolfe K.
        • Xiao L.
        • Zhang Z.-J.
        • Huang Y.-G.
        • Zhang X.
        Ionotropic glutamate receptor antagonists inhibit the proliferation of granule cell precursors in the adult brain after seizures induced by pentylenetrazol.
        Brain Res. 2004; 1020: 154-160https://doi.org/10.1016/j.brainres.2004.06.028
        • Lüttjohann A.
        • Fabene P.F.
        • van Luijtelaar G.
        A revised Racine's scale for PTZ-induced seizures in rats.
        Physiol Behav. 2009; 98: 579-586https://doi.org/10.1016/j.physbeh.2009.09.005
        • Racine R.J.
        Modification of seizure activity by electrical stimulation: II. Motor seizure.
        Electroencephalogr Clin Neurophysiol. 1972; 32: 281-294https://doi.org/10.1016/0013-4694(72)90177-0
        • Hernandez-Gonzalez M.
        • Guevara M.A.
        • Moralí G.
        • Cervantes M.
        Computer programs to analyze brain electrical activity during copulatory pelvic thrusting in male rats.
        Physiol Behav. 1997; 62: 701-708https://doi.org/10.1016/s0031-9384(97)00006-1
        • Guevara M.A.
        • Sanz-Martín A.
        • Corsi-Cabrera M.
        • Amezcua-Gutiérrez C.
        • Hernández-González M.
        CHECASEN: programa para revisar señales EEG fuera de línea.
        Rev Mex Ing Biomed. 2010; XXXI: 135-141
        • Guevara M.A.
        • Hernández-González M.
        EEGmagic: programa para analizar señales electroencefalográficas.
        Rev Mex Ing Biomed. 2009; 30: 41-53
        • Gavrilov V.V.
        • Wiener S.I.
        • Berthoz A.
        Enhanced hippocampal theta EEG during whole body rotations in awake restrained rats.
        Neurosci Lett. 1995; 197: 239-241https://doi.org/10.1016/0304-3940(95)11918-m
        • Vinogradova O.S.
        Expression, control, and probable functional significance of the neuronal theta-rhythm.
        Prog Neurobiol. 1995; 45: 523-583https://doi.org/10.1016/0301-0082(94)00051-i
        • Hernandez-Gonzalez M.
        • Guevara M.A.
        • Morali G.
        • Cervantes M.
        Subcortical multiple unit activity changes during rat male sexual behavior.
        Physiol Behav. 1997; 61: 285-291https://doi.org/10.1016/s0031-9384(96)00367-8
        • Ayhan F.
        • Kulkarni A.
        • Berto S.
        • Sivaprakasam K.
        • Douglas C.
        • Lega B.C.
        • et al.
        Resolving cellular and molecular diversity along the hippocampal anterior-to-posterior axis in humans.
        Neuron. 2021; 109: 2091-2105.e6https://doi.org/10.1016/j.neuron.2021.05.003
        • Fanselow M.S.
        • Dong H.-W.
        Are the dorsal and ventral hippocampus functionally distinct structures?.
        Neuron. 2010; 65: 7-19https://doi.org/10.1016/j.neuron.2009.11.031
        • Sakaguchi Y.
        • Sakurai Y.
        Left-right functional difference of the rat dorsal hippocampus for short-term memory and long-term memory.
        Behav Brain Res. 2020; 382: 112478https://doi.org/10.1016/j.bbr.2020.112478
        • Burgess N.
        • Maguire E.A.
        • O'Keefe J.
        The human hippocampus and spatial and episodic memory.
        Neuron. 2002; 35: 625-641https://doi.org/10.1016/s0896-6273(02)00830-9
        • Ohta H.
        • Sakai S.
        • Ito S.
        • Ishizuka T.
        • Fukazawa Y.
        • Kemuriyama T.
        • et al.
        Paired stimulation between CA3 and CA1 alters excitability of CA3 in the rat hippocampus.
        Neurosci Lett. 2013; 534: 182-187https://doi.org/10.1016/j.neulet.2012.11.058
        • Langston R.F.
        • Stevenson C.H.
        • Wilson C.L.
        • Saunders I.
        • Wood E.R.
        The role of hippocampal subregions in memory for stimulus associations.
        Behav Brain Res. 2010; 215: 275-291https://doi.org/10.1016/j.bbr.2010.07.006
        • Lenck-Santini P.P.
        • Sakkaki S.
        Alterations of neuronal dynamics as a mechanism for cognitive impairment in epilepsy.
        Curr Top Behav Neurosci. 2022; 55: 65-106https://doi.org/10.1007/7854_2020_193
        • George S.
        • James S.
        • De Blas A.L.
        Selective overexpression of collybistin in mouse hippocampal pyramidal cells enhances GABAergic neurotransmission and protects against PTZ-induced seizures.
        eNeuro. 2021; 8: 1-17https://doi.org/10.1523/ENEURO.0561-20.2021
        • Li Y.
        • Huang W.Y.
        • Lv C.Y.
        • Cong J.
        • Jie W.
        • Li S.J.
        • et al.
        Satb2 ablation decreases PTZ-induced seizure susceptibility and pyramidal neuronal excitability.
        Brain Res. 2018; 1695: 102-107https://doi.org/10.1016/j.brainres.2018.05.006
        • Treiman D.M.
        GABAergic mechanisms in epilepsy.
        Epilepsia. 2001; 3: 8-12https://doi.org/10.1046/j.1528-1157.2001.042suppl.3008.x
        • Sajadian A.
        • Esteghamat S.
        • Karimzadeh F.
        • Eshaghabadi A.
        • Sieg F.
        • Speckmann E.-J.
        • et al.
        Anticonvulsant effect of neural regeneration peptide 2945 on pentylenetetrazol-induced seizures in rats.
        Neuropeptides. 2015; 49: 15-23https://doi.org/10.1016/j.npep.2014.11.002
        • Zienowicz M.
        • Wisłowska A.
        • Lehner M.
        • Taracha E.
        • Skórzewska A.
        • Maciejak P.
        • et al.
        The effect of fluoxetine in a model of chemically induced seizures—behavioral and immunocytochemical study.
        Neurosci Lett. 2005; 373: 226-231https://doi.org/10.1016/j.neulet.2004.10.009
        • Guevara-Pérez M.A.
        • Hernández-González M.
        Análisis automatizado de la interacción electroencefalográfica prefronto-parietal.
        Universidad de Guadalajara, Guadalajara2020
        • Tchekalarova J.
        • Kortenska L.
        • Marinov P.
        • Boyanov K.
        Comparative power spectrum analysis of EEG activity in spontaneously hypertensive and Wistar rats in kainate model of temporal model of epilepsy.
        Brain Res Bull. 2016; 124: 62-75https://doi.org/10.1016/j.brainresbull.2016.03.021
        • Tchekalarova J.
        • Angelova V.T.
        • Todorova N.
        • Andreeva-Gateva P.
        • Rangelov M.
        Evaluation of the anticonvulsant effect of novel melatonin derivatives in the intravenous pentylenetetrazol seizure test in mice.
        Eur J Pharmacol. 2019; 863: 172684https://doi.org/10.1016/j.ejphar.2019.172684
        • Buzsaki G.
        • Horvath Z.
        • Urioste R.
        • Hetke J.
        • Wise K.
        High-frequency network oscillation in the hippocampus.
        Science. 1992; 256: 1025-1027https://doi.org/10.1126/science.1589772
        • Buzsáki G.
        • Draguhn A.
        Neuronal oscillations in cortical networks.
        Science. 2004; 304: 1926-1929https://doi.org/10.1126/science.1099745
        • Penttonen M.
        • Kamondi A.
        • Acsády L.
        • Buzsáki G.
        Gamma frequency oscillation in the hippocampus of the at: Intracellular analysis in vivo.
        Eur J Neurosci. 1998; 10: 718-728https://doi.org/10.1046/j.1460-9568.1998.00096.x
        • Yang L.
        • Worrell G.A.
        • Nelson C.
        • Brinkmann B.
        • He B.
        Spectral and spatial shifts of post-ictal slow waves in temporal lobe seizures.
        Brain. 2012; 135: 3134-3143https://doi.org/10.1093/brain/aws221
        • Medvedev A.V.
        • Kuznetsova G.D.
        Spectral and coherence EEG analysis of rats differing in the level of seizure readiness.
        Zh Vyssh Nerv Deiat Im I P Pavlova. 1986; 36: 94-100
        • Vorobyov V.
        • Schibaev N.
        • Kaptsov V.
        • Kovalev G.
        • Sengpiel F.
        Cortical and hippocampal EEG effects of neurotransmitter agonists in spontaneously hypertensive vs. kainate-treated rats.
        Brain Res. 2011; 1383: 154-168https://doi.org/10.1016/j.brainres.2011.01.107
        • Davis C.J.
        • Clinton J.M.
        • Jewett K.A.
        • Zielinski M.R.
        • Krueger J.M.
        Delta wave power: an independent sleep phenotype or epiphenomenon?.
        J Clin Sleep Med. 2011; 7https://doi.org/10.5664/JCSM.1346
        • Dasilva M.
        • Camassa A.
        • Navarro-Guzman A.
        • Pazienti A.
        • Perez-Mendez L.
        • Zamora-López G.
        • et al.
        Modulation of cortical slow oscillations and complexity across anesthesia levels.
        NeuroImage. 2021; 224: 117415https://doi.org/10.1016/j.neuroimage.2020.117415
        • Dentico D.
        • Bachhuber D.
        • Riedner B.A.
        • Ferrarelli F.
        • Tononi G.
        • Davidson R.J.
        • et al.
        Acute effects of meditation training on the waking and sleeping brain: Is it all about homeostasis?.
        Eur J Neurosci. 2018; 48: 2310-2321https://doi.org/10.1111/ejn.14131
        • Ardeshna N.I.
        EEG and Coma.
        Neurodiagnostic J. 2016; 56: 1-16https://doi.org/10.1080/21646821.2015.1114879
        • Gutiérrez-Guzmán B.E.
        • Hernández-Pérez J.J.
        • González-Burgos I.
        • Feria-Velásco A.
        • Medina R.
        • Guevara M.Á.
        • et al.
        Hippocampal serotonin depletion facilitates place learning concurrent with an increase in CA1 high frequency theta activity expression in the rat.
        Eur J Pharmacol. 2011; 652: 73-81https://doi.org/10.1016/j.ejphar.2010.11.014
        • Olvera-Cortés E.
        • Cervantes M.
        • González-Burgos I.
        Place-learning, but not cue-learning training, modifies the hippocampal theta rhythm in rats.
        Brain Res Bull. 2002; 58: 261-270https://doi.org/10.1016/s0361-9230(02)00769-4
        • Olvera-Cortés E.
        • Guevara M.A.
        • González-Burgos I.
        Increase of the hippocampal theta activity in the Morris water maze reflects learning rather than motor activity.
        Brain Res Bull. 2004; 62: 379-384https://doi.org/10.1016/j.brainresbull.2003.10.003
        • Tseng H.-T.
        • Hsiao Y.-T.
        • Yi P.-L.
        • Chang F.-Ch.
        Deep brain stimulation increases seizure threshold by altering rem sleep and delta powers during nrem sleep.
        Front Neurol. 2020; 11https://doi.org/10.3389/fneur.2020.00752
        • Buzsáki G.
        Rhythms of the brain.
        Oxford University Press, New York2006
        • Reid I.C.
        • Stewart C.A.
        Seizures, memory and synaptic plasticity.
        Seizure. 1997; 6: 351-359
        • Gentsch C.
        • Lichtsteiner M.
        • Feer H.
        Genetic and environmental influences on reactive and spontaneous locomotor activities in rats.
        Experientia. 1991; 47: 998-1008https://doi.org/10.1007/BF01923335
        • Cavus I.
        • Kasoff W.S.
        • Cassaday M.P.
        • Jacob R.
        • Gueorguieva R.
        • Sherwin R.S.
        • et al.
        Extracellular metabolites in the cortex and hippocampus of epileptic patients.
        Ann Neurol. 2005; 57: 226-235https://doi.org/10.1002/ana.20380
        • During D.
        Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain.
        The Lancet. 1993; 341: 1607-1610https://doi.org/10.1016/0140-6736(93)90754-5
        • Assis-Souza M.
        • Oliveira M.S.
        • Furian A.F.
        • Rambo L.M.
        • Ribeiro L.R.
        • Lima F.D.
        • et al.
        Swimming training prevents pentylenetetrazol-induced inhibition of Na+, K+-ATPase activity, seizures, and oxidative stress.
        Epilepsia. 2009; 50: 811-823https://doi.org/10.1111/j.1528-1167.2008.01908.x
        • Patel A.B.
        • de Graaf R.A.
        • Mason G.F.
        • Kanamatsu T.
        • Rothman D.L.
        • Shulman R.G.
        • et al.
        Glutamatergic Neurotransmission and Neuronal Glucose Oxidation are Coupled during Intense Neuronal Activation.
        J Cereb Blood Flow Metab. 2004; 24: 972-985https://doi.org/10.1097/01.WCB.0000126234.16188.71
        • Silva L.F.A.
        • Hoffmann M.S.
        • Gerbatin R.d.R.
        • Fiorin F.d.S.
        • Dobrachinski F.
        • Mota B.C.
        • et al.
        Treadmill exercise protects against pentylenetetrazol-induced seizures and oxidative stress after traumatic brain injury.
        J Neurotrauma. 2013; 30: 1278-1287https://doi.org/10.1089/neu.2012.2577
        • Kapur J.
        • Lothman E.W.
        NMDA receptor activation mediates the loss of GABAergic inhibition induced by recurrent seizures.
        Epilepsy Res. 1990; 5: 103-111https://doi.org/10.1016/0920-1211(90)90025-q
        • Morimoto K.
        Seizure-triggering mechanisms in the kindling model of epilepsy: collapse of GABA-mediated inhibition and activation of NMDA receptors.
        Neurosci Biobehav Rev. 1989; 13: 253-260
        • Hasbani M.J.
        • Schlief M.L.
        • Fisher D.A.
        • Goldberg M.P.
        Dendritic spines lost during glutamate receptor activation reemerge at original sites of synaptic contact.
        J Neurosci. 2001; 21: 2393-2403https://doi.org/10.1523/JNEUROSCI.21-07-02393.2001
        • Araya R.
        • Jiang J.
        • Eisenthal K.B.
        • Yuste R.
        The spine neck filters membrane potentials.
        Proc Natl Acad Sci USA. 2006; 103: 17961-17966https://doi.org/10.1073/pnas.0608755103
        • Ashby M.C.
        • Maier S.R.
        • Nishimune A.
        • Henley J.M.
        Lateral diffusion drives constitutive exchange of AMPA receptors at dendritic spines and is regulated by spine morphology.
        J Neurosci. 2006; 26: 7046-7055https://doi.org/10.1523/JNEUROSCI.1235-06.2006
        • Korkotian E.
        • Segal M.
        Morphological constraints on calcium dependent glutamate receptor trafficking into individual dendritic spine.
        Cell Calcium. 2007; 42: 41-57https://doi.org/10.1016/j.ceca.2006.11.006
        • Segal M.
        Dendritic spines, synaptic plasticity and neuronal survival: activity shapes dendritic spines to enhance neuronal viability.
        Eur J Neurosci. 2010; 31: 2178-2184https://doi.org/10.1111/j.1460-9568.2010.07270.x
        • Koch C.
        • Zador A.
        The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization.
        J Neurosci. 1993; 13: 413-422https://doi.org/10.1523/JNEUROSCI.13-02-00413
        • Koch C.
        • Zador A.
        • Brown T.
        Dendritic spines: convergence of theory and experiment.
        Science. 1992; 256: 973-974https://doi.org/10.1126/science.1589781
        • Yuste R.
        • Denk W.
        Dendritic spines as basic functional units of neuronal integration.
        Nature. 1995; 375: 682-684https://doi.org/10.1038/375682a0
        • Bourne J.
        • Harris K.M.
        Do thin spines learn to be mushroom spines that remember?.
        Curr Opin Neurobiol. 2007; 17: 381-386https://doi.org/10.1016/j.conb.2007.04.009
        • González-Burgos I.
        From synaptic transmission to cognition: an intermediary role for dendritic spines.
        Brain Cogn. 2012; 80: 177-183https://doi.org/10.1016/j.bandc.2012.03.002
        • González-Burgos I.
        Psychobiological principles of the memory process.
        Nova Science Publishers, New York2022
        • González-Ramírez M.M.
        • Velázquez-Zamora D.A.
        • Olvera-Cortés M.E.
        • González-Burgos I.
        Changes in the plastic properties of hippocampal dendritic spines underlie the attenuation of place learning in healthy aged rats.
        Neurobiol Learn Mem. 2014; 109: 94-103https://doi.org/10.1016/j.nlm.2013.11.017
        • González-Tapia D.
        • Martínez-Torres N.I.
        • Hernández-González M.
        • Guevara M.A.
        • González-Burgos I.
        Plastic changes to dendritic spines on layer V pyramidal neurons are involved in the rectifying role of the prefrontal cortex during the fast period of motor learning.
        Behav Brain Res. 2016; 298: 261-267https://doi.org/10.1016/j.bbr.2015.11.013
        • Nabavi S.
        • Fox R.
        • Proulx C.D.
        • Lin J.Y.
        • Tsien R.Y.
        • Malinow R.
        Engineering a memory with LTD and LTP.
        Nature. 2014; 511: 348-352https://doi.org/10.1038/nature13294
        • Segal M.
        Dendritic spines: morphological building blocks of memory.
        Neurobiol Learn Mem. 2017; 138: 3-9https://doi.org/10.1016/j.nlm.2016.06.007
        • Martínez-Torres N.I.
        • Vázquez-Hernández N.
        • Martín-Amaya-Barajas F.L.
        • Flores-Soto M.
        • González-Burgos I.
        Ibotenic acid induced lesions impair the modulation of dendritic spine plasticity in the prefrontal cortex and amygdala, a phenomenon that underlies working memory and social behavior.
        Eur J Pharmacol. 2021; 896https://doi.org/10.1016/j.ejphar.2021.173883
        • Portilla-de Buen E.
        • Salgado-Ceballos H.
        • González-Tapia D.
        • Leal-Cortés C.
        • Mondragón-Lozano R.
        • Sánchez-Torres S.
        • et al.
        Spinogenesis and plastic changes in the dendritic spines of spinal cord motoneurons after traumatic injury in rats.
        Arch Med Res. 2017; 48: 609-615https://doi.org/10.1016/j.arcmed.2018.03.002
        • Vázquez-Hernández N.
        • Martínez-Torres N.I.
        • González-Burgos I.
        Plastic changes to dendritic spines in the cerebellar and prefrontal cortices underlie the decline in motor coordination and working memory during successful aging.
        Behav Brain Res. 2021; 400: 113014https://doi.org/10.1016/j.bbr.2020.113014
        • Chidambaram S.B.
        • Rathipriya A.G.
        • Bolla S.R.
        • Bhat A.
        • Ray B.
        • Mahalakshmi A.M.
        • et al.
        Dendritic spines: revisiting the physiological role.
        Prog Neuro-Psychopharmacol Biol Psychiatry. 2019; 92: 161-193https://doi.org/10.1016/j.pnpbp.2019.01.005
        • Maiti P.
        • Manna J.
        • Ilavazhagan G.
        • Rossignol J.
        • Dunbar G.L.
        Molecular regulation of dendritic spine dynamics and their potential impact on synaptic plasticity and neurological diseases.
        Neurosci Biobehav Rev. 2015; 59: 208-237https://doi.org/10.1016/j.neubiorev.2015.09.020
        • González-Burgos I.
        • González-Tapia D.
        • Zamora D.A.V.
        • Feria-Velasco A.
        • Beas-Zárate C.
        Guided motor training induces dendritic spine plastic changes in adult rat cerebellar purkinje cells.
        Neurosci Lett. 2011; 491: 216-220https://doi.org/10.1016/j.neulet.2011.01.043
        • González-Tapia D.
        • Velázquez-Zamora D.A.
        • Olvera-Cortés M.E.
        • González-Burgos I.
        The motor learning induces plastic changes in dendritic spines of Purkinje cells from the neocerebellar cortex of the rat.
        Restor Neurol Neurosci. 2015; 33: 639-645https://doi.org/10.3233/RNN-140462
        • Harris K.M.
        • Jensen F.E.
        • Tsao B.
        Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation.
        J Neurosci. 1992; 12: 2685-2705https://doi.org/10.1523/JNEUROSCI.12-07-02685.1992
        • Ren W.-W.
        • Liu Y.
        • Li B.-M.
        Stimulation of α2A-adrenoceptors promotes the maturation of dendritic spines in cultured neurons of the medial prefrontal cortex.
        Mol Cell Neurosci. 2012; 49: 205-216https://doi.org/10.1016/j.mcn.2011.10.001
        • Swann J.W.
        • Al-Noori S.
        • Jiang M.
        • Lee C.L.
        Spine loss and other dendritic abnormalities in epilepsy.
        Hippocampus. 2000; 10: 617-625https://doi.org/10.1002/1098-1063(2000)10:5<617::AID-HIPO13>3.0.CO;2-R
        • Vázquez-Hernández N.
        • González-Tapia D.C.
        • Martínez-Torres N.I.
        • González-Tapia D.
        • González-Burgos I.
        Different patterns of motor activity induce differential plastic changes in pyramidal neurons in the motor cortex of rats: a Golgi study.
        Neurosci Lett. 2017; 657: 27-31https://doi.org/10.1016/j.neulet.2017.07.040
        • Holmes W.R.
        Is the function of dendritic spines to concentrate calcium?.
        Brain Res. 1990; 519: 338-342https://doi.org/10.1016/0006-8993(90)90098-v
        • Harris K.M.
        • Kater S.B.
        Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function.
        Annu Rev Neurosci. 1994; 17: 341-371https://doi.org/10.1146/annurev.ne.17.030194.002013
        • Oren I.
        • Mann E.O.
        • Paulsen O.
        • Hájos N.
        Synaptic currents in anatomically identified CA3 neurons during hippocampal gamma oscillations in vitro.
        J Neurosci. 2006; 26: 9923-9934https://doi.org/10.1523/JNEUROSCI.1580-06.2006
        • Molinari F.
        • Cattani A.A.
        • Mdzomba J.B.
        • Aniksztejn L.
        Glutamate transporters control metabotropic glutamate receptors activation to prevent the genesis of paroxysmal burst in the developing hippocampus.
        Neuroscience. 2012; 207: 25-36https://doi.org/10.1016/j.neuroscience.2012.01.036
        • Takata N.
        • Yoshida K.
        • Komaki Y.
        • Xu M.
        • Sakai Y.
        • Hikishima K.
        • Mimura M.
        • Okano H.
        • Tanaka K.F.
        Optogenetic activation of CA1 pyramidal neurons at the dorsal and ventral hippocampus evokes distinct brain-wide responses revealed by mouse fMRI.
        PLoS One. 2015; 10: e0121417https://doi.org/10.1371/journal.pone.0121417
        • Silva-Barrat C.
        • Ménini C.
        • Bryère P.
        • Naquet R.
        Multiunitary activity analysis of cortical and subcortical structures in paroxysmal discharges and grand mal seizures in photosensitive baboons.
        Electroencephalogr Clin Neurophysiol. 1986; 64: 455-468https://doi.org/10.1016/0013-4694(86)90079-9