Advertisement

Early endocannabinoid system activation attenuates behavioral impairments induced by initial impact but does not prevent epileptogenesis in lithium–pilocarpine status epilepticus model

Published:January 06, 2019DOI:https://doi.org/10.1016/j.yebeh.2018.12.001

      Highlights

      • Behavior in elevated plus maze test depends mostly on the consequences of SE.
      • Hyperactivity in open field depends on the development of spontaneous seizures.
      • Early post-SE endocannabinoid activation modulates emotional behavior.
      • Early post-SE endocannabinoid activation does not prevent epileptogenesis.

      Abstract

      Mood and anxiety disorders, as well as memory impairments, are important factors affecting quality of life in patients with epilepsy and can influence the antiepileptic therapy. Clinical studies of psychiatric comorbidities are quite complicated to design and interpret, so animal studies of behavioral impairments associated with seizures can be of use. We investigated the effect of early administration of endocannabinoid receptor agonist WIN-55,212-2 on the development of spontaneous seizures, long-term behavioral and memory impairments, and neurodegeneration in the hippocampus on the lithium–pilocarpine model of status epilepticus (SE). We also studied the role of spontaneous seizures in the development of pathologic consequences of the SE. Our results showed that behavioral impairments found in the elevated plus maze test depended mostly on the consequences of SE itself and not on the development of spontaneous seizures while hyperactivity in the open-field test and light–dark chamber was more prominent in rats with spontaneous seizures. Administration of WIN-55,212-2 decreased emotional behavior in the elevated plus maze but did not affect hyperactive behavior in the open-field test. Spatial memory impairment developed both in the presence or absence of spontaneous seizures and was not affected by administration of WIN-55,212-2. Both administration of endocannabinoid receptor agonist WIN-55,212-2 and the presence of spontaneous seizures affected SE-induced neuronal loss in the hippocampus.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Epilepsy & Behavior
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Müller C.J.
        • Gröticke I.
        • Bankstahl M.
        • Löscher W.
        Behavioral and cognitive alterations, spontaneous seizures, and neuropathology developing after a pilocarpine-induced status epilepticus in C57BL/6 mice.
        Exp Neurol. 2009; 219: 284-297https://doi.org/10.1016/j.expneurol.2009.05.035
        • Josephson C.B.
        • Jetté N.
        Psychiatric comorbidities in epilepsy.
        Int Rev Psychiatry. 2017; 29: 409-424https://doi.org/10.1080/09540261.2017.1302412
        • Fisher P.L.
        • Noble A.J.
        Anxiety and depression in people with epilepsy: the contribution of metacognitive beliefs.
        Seizure. 2017; 50: 153-159https://doi.org/10.1016/j.seizure.2017.06.012
        • Gröticke I.
        • Hoffmann K.
        • Löscher W.
        Behavioral alterations in the pilocarpine model of temporal lobe epilepsy in mice.
        Exp Neurol. 2007; 207: 329-349https://doi.org/10.1016/j.expneurol.2007.06.021
        • Kanner A.M.
        • Barry J.J.
        • Gilliam F.
        • Hermann B.
        • Meador K.J.
        Anxiety disorders, subsyndromic depressive episodes, and major depressive episodes: do they differ on their impact on the quality of life of patients with epilepsy?.
        Epilepsia. 2010; 51: 1152-1158https://doi.org/10.1111/j.1528-1167.2010.02582.x
        • Aguilar B.L.
        • Malkova L.
        • N'Gouemo P.
        • Forcelli P.A.
        Genetically epilepsy-prone rats display anxiety-like behaviors and neuropsychiatric comorbidities of epilepsy.
        Front Neurol. 2018; 9476https://doi.org/10.3389/fneur.2018.00476
        • Lambert M.V.
        • Robertson M.M.
        Depression in epilepsy: etiology, phenomenology, and treatment.
        Epilepsia. 1999; 40: s21-s47https://doi.org/10.1111/j.1528-1157.1999.tb00884.x
        • Harden C.L.
        The co-morbidity of depression and epilepsy: epidemiology, etiology, and treatment.
        Neurology. 2002; 59: S48-S55https://doi.org/10.1212/WNL.59.6_suppl_4.S48
        • Kanner A.M.
        • Balabanov A.
        Depression and epilepsy: how closely related are they?.
        Neurology. 2002; 58: S27-S39
        • Mula M.
        • Cock H.R.
        More than seizures: improving the lives of people with refractory epilepsy.
        Eur J Neurol. 2015; 22: 24-30https://doi.org/10.1111/ene.12603
        • Munger Clary H.M.
        • Snively B.M.
        • Hamberger M.J.
        Anxiety is common and independently associated with clinical features of epilepsy.
        Epilepsy Behav. 2018; 85: 64-71https://doi.org/10.1016/j.yebeh.2018.05.024
        • Kanner A.M.
        Anxiety disorders in epilepsy: the forgotten psychiatric comorbidity.
        Epilepsy Curr. 2011; 11: 90-91https://doi.org/10.5698/1535-7511-11.3.90
        • Jope R.S.
        • Morrisett R.A.
        • Snead O.C.
        Characterization of lithium potentiation of pilocarpine-induced status epilepticus in rats.
        Exp Neurol. 1986; 91: 471-480
        • Leite J.P.
        • Garcia-Cairasco N.
        • Cavalheiro E.A.
        New insights from the use of pilocarpine and kainate models.
        Epilepsy Res. 2002; 50 ([doi:S0920121102000724 [pii]]): 93-103
        • Löscher W.
        Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs.
        Seizure. 2011; 20: 359-368https://doi.org/10.1016/j.seizure.2011.01.003
        • Pitkänen A.
        • Nissinen J.
        • Nairismägi J.
        • Lukasiuk K.
        • Gröhn O.H.J.
        • Miettinen R.
        • et al.
        Progression of neuronal damage after status epilepticus and during spontaneous seizures in a rat model of temporal lobe epilepsy.
        Prog Brain Res. 2002; 135: 67-83https://doi.org/10.1016/S0079-6123(02)35008-8
        • Andre V.
        • Dube C.
        • Francois J.
        • Leroy C.
        • Rigoulot M.-A.A.
        • Roch C.
        • et al.
        Pathogenesis and pharmacology of epilepsy in the lithium–pilocarpine model.
        Epilepsia. 2007; 48 ([doi:EPI1288 [pii]]): 41-47https://doi.org/10.1111/j.1528-1167.2007.01288.x
        • Cavalheiro E.A.
        • Leite J.P.
        • Bortolotto Z.A.
        • Turski W.A.
        • Ikonomidou C.
        • Turski L.
        Long-term effects of pilocarpine in rats: structural damage of the brain triggers kindling and spontaneous recurrent seizures.
        Epilepsia. 1991; 32: 778-782
        • Nairismagi J.
        • Grohn O.H.
        • Kettunen M.I.
        • Nissinen J.
        • Kauppinen R.A.
        • Pitkanen A.
        • et al.
        Progression of brain damage after status epilepticus and its association with epileptogenesis: a quantitative MRI study in a rat model of temporal lobe epilepsy.
        Epilepsia. 2004; 45 ([pii]): 1024-1034https://doi.org/10.1111/j.0013-9580.2004.08904.xEPI08904
        • Clifford D.B.
        • Olney J.W.
        • Maniotis A.
        • Collins R.C.
        • Zorumski C.F.
        The functional anatomy and pathology of lithium–pilocarpine and high-dose pilocarpine seizures.
        Neuroscience. 1987; 23: 953-968
        • Persinger M.A.
        • Bureau Y.R.J.
        • Kostakos M.
        • Peredery O.
        • Falter H.
        Behaviors of rats with insidious, multifocal brain damage induced by seizures following single peripheral injections of lithium and pilocarpine.
        Physiol Behav. 1993; 53: 849-866https://doi.org/10.1016/0031-9384(93)90261-D
        • Detour J.
        • Schroeder H.
        • Desor D.
        • Nehlig A.
        A 5-month period of epilepsy impairs spatial memory, decreases anxiety, but spares object recognition in the lithium–pilocarpine model in adult rats.
        Epilepsia. 2005; 46: 499-508https://doi.org/10.1111/j.0013-9580.2005.38704.x
        • Faure J.B.
        • Akimana G.
        • Carneiro J.E.M.
        • Cosquer B.
        • Ferrandon A.
        • Geiger K.
        • et al.
        A comprehensive behavioral evaluation in the lithium–pilocarpine model in rats: effects of carisbamate administration during status epilepticus.
        Epilepsia. 2013; 54: 1203-1213https://doi.org/10.1111/epi.12219
        • Pineda E.
        • Shin D.
        • Sankar R.
        • Mazarati A.M.
        Comorbidity between epilepsy and depression: experimental evidence for the involvement of serotonergic, glucocorticoid, and neuroinflammatory mechanisms.
        Epilepsia. 2010; 51: 110-114https://doi.org/10.1111/j.1528-1167.2010.02623.x
        • Mazarati A.
        • Siddarth P.
        • Baldwin R.A.
        • Shin D.
        • Caplan R.
        • Sankar R.
        Depression after status epilepticus: behavioural and biochemical deficits and effects of fluoxetine.
        Brain. 2008; 131: 2071-2083https://doi.org/10.1093/brain/awn117
        • Zanirati G.
        • Azevedo P.N.
        • Venturin G.T.
        • Greggio S.
        • Alcará A.M.
        • Zimmer E.R.
        • et al.
        Depression comorbidity in epileptic rats is related to brain glucose hypometabolism and hypersynchronicity in the metabolic network architecture.
        Epilepsia. 2018; 59: 923-934https://doi.org/10.1111/epi.14057
        • Leite J.P.
        • Nakamura E.M.
        • Lemos T.
        • Masur J.
        • Cavalheiro E.A.
        Learning impairment in chronic epileptic rats following pilocarpine-induced status epilepticus.
        Braz J Med Biol Res. 1990; 23: 681-683
        • Katona I.
        • Freund T.F.
        Endocannabinoid signaling as a synaptic circuit breaker in neurological disease.
        Nat Med. 2008; 14: 923-930https://doi.org/10.1038/nm.f.1869
        • Kano M.
        • Ohno-Shosaku T.
        • Hashimotodani Y.
        • Uchigashima M.
        Endocannabinoid-mediated control of synaptic transmission.
        2009: 309-380https://doi.org/10.1152/physrev.00019.2008
        • Wallace M.J.
        • Wiley J.L.
        • Martin B.R.
        • Delorenzo R.J.
        Assessment of the role of CB1 receptors in cannabinoid anticonvulsant effects.
        Eur J Pharmacol. 2001; 428: 51-57https://doi.org/10.1016/S0014-2999(01)01243-2
        • Kozan R.
        • Ayyildiz M.
        • Agar E.
        The effects of intracerebroventricular AM-251, a CB1-receptor antagonist, and ACEA, a CB1-receptor agonist, on penicillin-induced epileptiform activity in rats.
        Epilepsia. 2009; 50: 1760-1767https://doi.org/10.1111/j.1528-1167.2009.02098.x
        • Blair R.E.
        • Deshpande L.S.
        • Sombati S.
        • Falenski K.W.
        • Martin B.R.
        • Delorenzo R.J.
        Activation of the cannabinoid type-1 receptor mediates the anticonvulsant properties of cannabinoids in the hippocampal neuronal culture models of acquired epilepsy and status epilepticus.
        J Pharmacol Exp Ther. 2006; 317: 1072-1078https://doi.org/10.1124/jpet.105.100354
        • von Rüden E.L.
        • Jafari M.
        • Bogdanovic R.M.
        • Wotjak C.T.
        • Potschka H.
        Analysis in conditional cannabinoid 1 receptor-knockout mice reveals neuronal subpopulation-specific effects on epileptogenesis in the kindling paradigm.
        Neurobiol Dis. 2014; https://doi.org/10.1016/j.nbd.2014.08.001
        • Vinogradova L.V.
        • Shatskova A.B.
        • Van Rijn C.M.
        Pro-epileptic effects of the cannabinoid receptor antagonist SR141716 in a model of audiogenic epilepsy.
        Epilepsy Res. 2011; 96: 250-256https://doi.org/10.1016/j.eplepsyres.2011.06.007
        • Deshpande L.S.
        • Sombati S.
        • Blair R.E.
        • Carter D.S.
        • Martin B.R.
        • Delorenzo R.J.
        Cannabinoid CB1 receptor antagonists cause status epilepticus-like activity in the hippocampal neuronal culture model of acquired epilepsy.
        Neurosci Lett. 2007; 411: 11-16https://doi.org/10.1016/j.neulet.2006.09.046
        • Zogopoulos P.
        • Vasileiou I.
        • Patsouris E.
        • Theocharis S.
        The neuroprotective role of endocannabinoids against chemical-induced injury and other adverse effects.
        J Appl Toxicol. 2013; 33: 246-264https://doi.org/10.1002/jat.2828
        • Schmidt W.
        • Schäfer F.
        • Striggow V.
        • Fröhlich K.
        • Striggow F.
        Cannabinoid receptor subtypes 1 and 2 mediate long-lasting neuroprotection and improve motor behavior deficits after transient focal cerebral ischemia.
        Neuroscience. 2012; 227: 313-326https://doi.org/10.1016/j.neuroscience.2012.09.080
        • Nagayama T.
        • Sinor A.D.
        • Simon R.P.
        • Chen J.
        • Graham S.H.
        • Jin K.
        • et al.
        Cannabinoids and neuroprotection in global and focal cerebral ischemia and in neuronal cultures.
        J Neurosci. 1999; 19: 2987-2995
        • Suleymanova E.M.
        • Shangaraeva V.A.
        • van Rijn C.M.
        • Vinogradova L.V.
        The cannabinoid receptor agonist WIN55.212 reduces consequences of status epilepticus in rats.
        Neuroscience. 2016; 334: 191-200https://doi.org/10.1016/j.neuroscience.2016.08.004
        • Racine R.J.
        Modification of seizure activity by electrical stimulation: II. Motor seizure.
        Electroencephalogr Clin Neurophysiol. 1972; 32: 281-294https://doi.org/10.1016/0013-4694(72)90177-0
        • Vorhees C.V.
        • Williams M.T.
        Morris water maze: procedures for assessing spatial and related forms of learning and memory.
        Nat Protoc. 2006; 1: 848-858https://doi.org/10.1038/nprot.2006.116
        • Vinogradova L.V.
        • van Rijn C.M.
        Long-term disease-modifying effect of the endocannabinoid agonist WIN55,212-2 in a rat model of audiogenic epilepsy.
        Pharmacol Rep. 2015; 67: 501-503https://doi.org/10.1016/j.pharep.2014.12.002
        • Ma L.
        • Wang L.
        • Yang F.
        • Meng X.-D.
        • Wu C.
        • Ma H.
        • et al.
        Disease-modifying effects of RHC80267 and JZL184 in a pilocarpine mouse model of temporal lobe epilepsy.
        CNS Neurosci Ther. 2014; https://doi.org/10.1111/cns.12302
        • Di Maio R.
        • Cannon J.R.
        • Timothy Greenamyre J.
        Post-status epilepticus treatment with the cannabinoid agonist WIN 55,212-2 prevents chronic epileptic hippocampal damage in rats.
        Neurobiol Dis. 2014; 73C: 356-365https://doi.org/10.1016/j.nbd.2014.10.018
        • Amaral D.G.
        • Scharfman H.E.
        • Lavenex P.
        The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies).
        Prog Brain Res. 2007; 163: 3-790https://doi.org/10.1016/S0079-6123(07)63001-5
        • Scharfman H.E.
        The enigmatic mossy cell of the dentate gyrus.
        Nat Rev Neurosci. 2016; 17: 562-575https://doi.org/10.1038/nrn.2016.87
        • Magloczky Z.
        • Freund T.F.
        Selective neuronal death in the contralateral hippocampus following unilateral kainate injections into the CA3 subfield.
        Neuroscience. 1993; 56: 317-336https://doi.org/10.1016/0306-4522(93)90334-C
        • Pellow S.
        • Chopin P.
        • File S.E.
        • Briley M.
        Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat.
        J Neurosci Methods. 1985; 14: 149-167
        • Bourin M.
        • Hascoët M.
        The mouse light/dark box test.
        Eur J Pharmacol. 2003; 463: 55-65https://doi.org/10.1016/S0014-2999(03)01274-3
        • Crawley J.
        • Goodwin F.K.
        Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines.
        Pharmacol Biochem Behav. 1980; 13: 167-170
        • Chaouloff F.
        • Durand M.
        • Mormède P.
        Anxiety- and activity-related effects of diazepam and chlordiazepoxide in the rat light/dark and dark/light tests.
        Behav Brain Res. 1997; 85: 27-35https://doi.org/10.1016/S0166-4328(96)00160-X
        • Imaizumi M.
        • Suzuki T.
        • Machida H.
        • Onodera K.
        A fully automated apparatus for a light/dark test measuring anxiolytic or anxiogenic effects of drugs in mice.
        Nihon Shinkei Seishin Yakurigaku Zasshi. 1994; 14: 83-91
        • Tchekalarova J.
        • Atanasova D.
        • Nenchovska Z.
        • Atanasova M.
        • Kortenska L.
        • Gesheva R.
        • et al.
        Agomelatine protects against neuronal damage without preventing epileptogenesis in the kainate model of temporal lobe epilepsy.
        Neurobiol Dis. 2017; 104: 1-14https://doi.org/10.1016/j.nbd.2017.04.017
        • Rojas A.
        • Ganesh T.
        • Manji Z.
        • O'neill T.
        • Dingledine R.
        Inhibition of the prostaglandin E2 receptor EP2 prevents status epilepticus-induced deficits in the novel object recognition task in rats.
        Neuropharmacology. 2016; 110: 419-430https://doi.org/10.1016/j.neuropharm.2016.07.028
        • Covolan L.
        • Mello L.E.
        Assessment of the progressive nature of cell damage in the pilocarpine model of epilepsy.
        Braz J Med Biol Res. 2006; 39 ([doi:S0100-879X2006000700010 [pii]): 915-924
        • Chiarlone A.
        • Bellocchio L.
        • Blázquez C.
        • Resel E.
        • Soria-Gómez E.
        • Cannich A.
        • et al.
        A restricted population of CB1 cannabinoid receptors with neuroprotective activity.
        Proc Natl Acad Sci U S A. 2014; 111: 8257-8262https://doi.org/10.1073/pnas.1400988111
        • Xu C.
        • Hermes D.J.
        • Nwanguma B.
        • Jacobs I.R.
        • Mackie K.
        • Mukhopadhyay S.
        • et al.
        Endocannabinoids exert CB1 receptor-mediated neuroprotective effects in models of neuronal damage induced by HIV-1 Tat protein.
        Mol Cell Neurosci. 2017; 83: 92-102https://doi.org/10.1016/j.mcn.2017.07.003
        • Panikashvili D.
        • Simeonidou C.
        • Ben-Shabat S.
        • Hanuš L.
        • Breuer A.
        • Mechoulam R.
        • et al.
        An endogenous cannabinoid (2-AG) is neuroprotective after brain injury.
        Nature. 2001; 413: 527-531https://doi.org/10.1038/35097089
        • Tsou K.
        • Mackie K.
        • Sañudo-Peña M.C.
        • Walker J.M.
        Cannabinoid CB1 receptors are localized primarily on cholecystokinin-containing GABAergic interneurons in the rat hippocampal formation.
        Neuroscience. 1999; 93: 969-975
        • Katona I.
        • Sperlágh B.
        • Sík A.
        • Käfalvi A.
        • Vizi E.S.
        • Mackie K.
        • et al.
        Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons.
        J Neurosci. 1999; 19: 4544-4558