Advertisement

Neuroimaging studies towards understanding the central effects of pharmacological cannabis products on patients with epilepsy

Published:January 18, 2017DOI:https://doi.org/10.1016/j.yebeh.2016.11.020

      Highlights

      • In health, cannabinoids have variable effects on cognition and fMRI signals.
      • Cannabinoids, in general, alter brain function and connectivity.
      • Investigations into the effects of cannabis on imaging in epilepsy are scarce.
      • Initial epilepsy studies suggest positive and negative CBD effects on fMRI signal.

      Abstract

      Recent interest for the use of cannabis-derived products as therapeutic agents in the treatment of epilepsies has necessitated a reevaluation of their effects on brain and behavior. Overall, prolonged cannabis use is thought to result in functional and structural brain alterations. These effects may be dependent on a number of factors: e.g., which phytocannabinoid is used (e.g., cannabidiol (CBD) vs. tetrahyrocannabinol (THC)), the frequency of use (occasional vs. heavy), and at what age (prenatal, childhood, adulthood) the use began. However, due to the fact that there are over seven hundred constituents that make up the Cannabis sativa plant, it is difficult to determine which compound or combination of compounds is responsible for specific effects when studying recreational users. Therefore, this review focuses only on the functional MRI studies investigating the effects of specific pharmacological preparations of cannabis compounds, specifically THC, tetrahydrocannabivarin (THCV), and CBD, on brain function in healthy individuals and persons with epilepsy with references to non-epilepsy studies only to underline the gaps in research that need to be filled before cannabis-derived products are considered for a wide use in the treatment of epilepsy.
      This article is part of a Special Issue entitled "Cannabinoids and Epilepsy"

      Abbreviations:

      fMRI (functional magnetic resonance imaging), THC (tetrahydrocannabinol), CBD (cannabidiol), THCV (tetrahydrocannabivarin), PWE (persons with epilepsy)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Epilepsy & Behavior
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Maa E.
        • Figi P.
        The case for medical marijuana in epilepsy.
        Epilepsia. 2014; 55: 783-786
        • Mathern G.W.
        • Beninsig L.
        • Nehlig A.
        Fewer specialists support using medical marijuana and CBD in treating epilepsy patients compared with other medical professionals and patients: result of Epilepsia's survey.
        Epilepsia. 2015; 56: 1-6
      1. GW Pharmaceuticals announces positive phase 3 pivotal trial results for Epidiolex (cannabidiol) in the treatment of Lennox–Gastaut syndrome. June 2016; Available from: http://www.gwpharm.com/GW Pharmaceuticals Announces Positive Phase 3 Pivotal Trial Results for Epidiolex cannabidiol in the Treatment of Lennox–Gastaut Syndrome.aspx.

      2. GW Pharmaceuticals announces second positive phase 3 pivotal trial for Epidiolex (cannabidiol) in the treatment of Lennox–Gastaut syndrome.
        (Available from:)
      3. GW Pharmaceuticals announces positive phase 3 pivotal study results for Epidiolex (cannabidiol) March 2016; Available from: http://www.gwpharm.com/GW Pharmaceuticals Announces Positive Phase 3 Pivotal Study Results for Epidiolex cannabidiol.aspx.

        • Romigi A.
        • Bari M.
        • Placidi F.
        • Marciani M.G.
        • Malaponti M.
        • Torelli F.
        • et al.
        Cerebrospinal fluid levels of the endocannabinoid anandamide are reduced in patients with untreated newly diagnosed temporal lobe epilepsy.
        Epilepsia. 2010; 51: 768-772
        • Ludanyi A.
        • Eross L.
        • Czirjak S.
        • Vajda J.
        • Halasz P.
        • Watanabe M.
        • et al.
        Downregulation of the CB1 cannabinoid receptor and related molecular elements of the endocannabinoid system in epileptic human hippocampus.
        J Neurosci. 2008; 28: 2976-2990
        • Goffin K.
        • Van Paesschen W.
        • Van Laere K.
        In vivo activation of endocannabinoid system in temporal lobe epilepsy with hippocampal sclerosis.
        Brain. 2011; 134: 1033-1040
        • Szaflarski J.P.
        • Bebin E.M.
        Cannabis, cannabidiol, and epilepsy—from receptors to clinical response.
        Epilepsy Behav. 2014; 41: 277-282
        • Friedman D.
        • Devinsky O.
        Cannabinoids in the treatment of epilepsy.
        N Engl J Med. 2015; 373: 1048-1058
        • Batalla A.
        • Bhattacharyya S.
        • Yucel M.
        • Fusar-Poli P.
        • Crippa J.A.
        • Nogue S.
        • et al.
        Structural and functional imaging studies in chronic cannabis users: a systematic review of adolescent and adult findings.
        PLoS One. 2013; 8e55821
        • Lorenzetti V.
        • Lubman D.I.
        • Whittle S.
        • Solowij N.
        • Yucel M.
        • Structural M.R.I.
        Findings in long-term cannabis users: what do we know?.
        Subst Use Misuse. 2010; 45: 1787-1808
        • Lisdahl K.M.
        • Wright N.E.
        • Kirchner-Medina C.
        • Maple K.E.
        • Shollenbarger S.
        Considering cannabis: the effects of regular cannabis use on neurocognition in adolescents and young adults.
        Curr Addict Rep. 2014; 1: 144-156
        • Zalesky A.
        • Solowij N.
        • Yucel M.
        • Lubman D.I.
        • Takagi M.
        • Harding I.H.
        • et al.
        Effect of long-term cannabis use on axonal fibre connectivity.
        Brain. 2012; 135: 2245-2255
        • Harkany T.
        • Guzman M.
        • Galve-Roperh I.
        • Berghuis P.
        • Devi L.A.
        • Mackie K.
        The emerging functions of endocannabinoid signaling during CNS development.
        Trends Pharmacol Sci. 2007; 28: 83-92
        • Bossong M.G.
        • Jansma J.M.
        • Bhattacharyya S.
        • Ramsey N.F.
        Role of the endocannabinoid system in brain functions relevant for schizophrenia: an overview of human challenge studies with cannabis or 9-tetrahydrocannabinol (THC).
        Prog Neuro-Psychopharmacol Biol Psychiatry. 2014; 52: 53-69
        • Radwan M.M.
        • ElSohly M.A.
        • El-Alfy A.T.
        • Ahmed S.A.
        • Slade D.
        • Husni A.S.
        • et al.
        Isolation and pharmacological evaluation of minor cannabinoids from high-potency Cannabis sativa.
        J Nat Prod. 2015; 78: 1271-1276
        • Vandrey R.
        • Raber J.C.
        • Raber M.E.
        • Douglass B.
        • Miller C.
        • Bonn-Miller M.O.
        Cannabinoid dose and label accuracy in edible medical cannabis products.
        JAMA. 2015; 313: 2491-2493
        • Grotenhermen F.
        Cannabinoids.
        Curr Drug Targets CNS Neurol Disord. 2005; 4: 507-530
        • Pertwee R.G.
        The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin.
        Br J Pharmacol. 2008; 153: 199-215
        • Eggan S.M.
        • Lewis D.A.
        Immunocytochemical distribution of the cannabinoid CB1 receptor in the primate neocortex: a regional and laminar analysis.
        Cereb Cortex. 2007; 17: 175-191
        • Ilan A.B.
        • Gevins A.
        • Coleman M.
        • ElSohly M.A.
        • de Wit H.
        Neurophysiological and subjective profile of marijuana with varying concentrations of cannabinoids.
        Behav Pharmacol. 2005; 16: 487-496
        • Ramaekers J.G.
        • Kauert G.
        • van Ruitenbeek P.
        • Theunissen E.L.
        • Schneider E.
        • Moeller M.R.
        High-potency marijuana impairs executive function and inhibitory motor control.
        Neuropsychopharmacology. 2006; 31: 2296-2303
        • Phan K.L.
        • Angstadt M.
        • Golden J.
        • Onyewuenyi I.
        • Popovska A.
        • de Wit H.
        Cannabinoid modulation of amygdala reactivity to social signals of threat in humans.
        J Neurosci. 2008; 28: 2313-2319
        • Borgwardt S.J.
        • Allen P.
        • Bhattacharyya S.
        • Fusar-Poli P.
        • Crippa J.A.
        • Seal M.L.
        • et al.
        Neural basis of delta-9-tetrahydrocannabinol and cannabidiol: effects during response inhibition.
        Biol Psychiatry. 2008; 64: 966-973
        • Fusar-Poli P.
        • Allen P.
        • Bhattacharyya S.
        • Crippa J.A.
        • Mechelli A.
        • Borgwardt S.
        • et al.
        Modulation of effective connectivity during emotional processing by delta 9-tetrahydrocannabinol and cannabidiol.
        Int J Neuropsychopharmacol. 2010; 13: 421-432
        • Fusar-Poli P.
        • Crippa J.A.
        • Bhattacharyya S.
        • Borgwardt S.J.
        • Allen P.
        • Martin-Santos R.
        • et al.
        Distinct effects of {delta}9-tetrahydrocannabinol and cannabidiol on neural activation during emotional processing.
        Arch Gen Psychiatry. 2009; 66: 95-105
        • Bhattacharyya S.
        • Fusar-Poli P.
        • Borgwardt S.
        • Martin-Santos R.
        • Nosarti C.
        • O'Carroll C.
        • et al.
        Modulation of mediotemporal and ventrostriatal function in humans by delta9-tetrahydrocannabinol: a neural basis for the effects of Cannabis sativa on learning and psychosis.
        Arch Gen Psychiatry. 2009; 66: 442-451
        • Winton-Brown T.T.
        • Allen P.
        • Bhattacharyya S.
        • Borgwardt S.J.
        • Fusar-Poli P.
        • Crippa J.A.
        • et al.
        Modulation of auditory and visual processing by delta-9-tetrahydrocannabinol and cannabidiol: an FMRI study.
        Neuropsychopharmacology. 2011; 36: 1340-1348
        • Bhattacharyya S.
        • Falkenberg I.
        • Martin-Santos R.
        • Atakan Z.
        • Crippa J.A.
        • Giampietro V.
        • et al.
        Cannabinoid modulation of functional connectivity within regions processing attentional salience.
        Neuropsychopharmacology. 2015; 40: 1343-1352
        • Bhattacharyya S.
        • Crippa J.A.
        • Allen P.
        • Martin-Santos R.
        • Borgwardt S.
        • Fusar-Poli P.
        • et al.
        Induction of psychosis by delta9-tetrahydrocannabinol reflects modulation of prefrontal and striatal function during attentional salience processing.
        Arch Gen Psychiatry. 2012; 69: 27-36
        • Atakan Z.
        • Bhattacharyya S.
        • Allen P.
        • Martin-Santos R.
        • Crippa J.A.
        • Borgwardt S.J.
        • et al.
        Cannabis affects people differently: inter-subject variation in the psychotogenic effects of delta9-tetrahydrocannabinol: a functional magnetic resonance imaging study with healthy volunteers.
        Psychol Med. 2013; 43: 1255-1267
        • Bhattacharyya S.
        • Atakan Z.
        • Martin-Santos R.
        • Crippa J.A.
        • Kambeitz J.
        • Prata D.
        • et al.
        Preliminary report of biological basis of sensitivity to the effects of cannabis on psychosis: AKT1 and DAT1 genotype modulates the effects of delta-9-tetrahydrocannabinol on midbrain and striatal function.
        Mol Psychiatry. 2012; 17: 1152-1155
        • Bossong M.G.
        • Jansma J.M.
        • van Hell H.H.
        • Jager G.
        • Kahn R.S.
        • Ramsey N.F.
        Default mode network in the effects of delta9-tetrahydrocannabinol (THC) on human executive function.
        PLoS One. 2013; 8e70074
        • Jansma J.M.
        • van Hell H.H.
        • Vanderschuren L.J.
        • Bossong M.G.
        • Jager G.
        • Kahn R.S.
        • et al.
        THC reduces the anticipatory nucleus accumbens response to reward in subjects with a nicotine addiction.
        Transl Psychiatry. 2013; 3e234
        • van Hell H.H.
        • Bossong M.G.
        • Jager G.
        • Kristo G.
        • van Osch M.J.
        • Zelaya F.
        • et al.
        Evidence for involvement of the insula in the psychotropic effects of THC in humans: a double-blind, randomized pharmacological MRI study.
        Int J Neuropsychopharmacol. 2011; 14: 1377-1388
        • van Hell H.H.
        • Bossong M.G.
        • Jager G.
        • Kahn R.S.
        • Ramsey N.F.
        Methods of the pharmacological imaging of the cannabinoid system (PhICS) study: towards understanding the role of the brain endocannabinoid system in human cognition.
        Int J Methods Psychiatr Res. 2011; 20: 10-27
        • van Hell H.H.
        • Jager G.
        • Bossong M.G.
        • Brouwer A.
        • Jansma J.M.
        • Zuurman L.
        • et al.
        Involvement of the endocannabinoid system in reward processing in the human brain.
        Psychopharmacology. 2012; 219: 981-990
        • Bossong M.G.
        • Jager G.
        • van Hell H.H.
        • Zuurman L.
        • Jansma J.M.
        • Mehta M.A.
        • et al.
        Effects of delta9-tetrahydrocannabinol administration on human encoding and recall memory function: a pharmacological FMRI study.
        J Cogn Neurosci. 2012; 24: 588-599
        • Bossong M.G.
        • Jansma J.M.
        • van Hell H.H.
        • Jager G.
        • Oudman E.
        • Saliasi E.
        • et al.
        Effects of delta9-tetrahydrocannabinol on human working memory function.
        Biol Psychiatry. 2012; 71: 693-699
        • Bossong M.G.
        • van Hell H.H.
        • Jager G.
        • Kahn R.S.
        • Ramsey N.F.
        • Jansma J.M.
        The endocannabinoid system and emotional processing: a pharmacological fMRI study with 9-tetrahydrocannabinol.
        Eur Neuropsychopharmacol. 2013; 23: 1687-1697
        • Kenakin T.
        Principles: receptor theory in pharmacology.
        Trends Pharmacol Sci. 2004; 25: 186-192
        • Tudge L.
        • Williams C.
        • Cowen P.J.
        • McCabe C.
        Neural effects of cannabinoid CB1 neutral antagonist tetrahydrocannabivarin on food reward and aversion in healthy volunteers.
        Int J Neuropsychopharmacol. 2015; 18
        • Rzepa E.
        • Tudge L.
        • McCabe C.
        The CB1 neutral antagonist tetrahydrocannabivarin reduces default mode network and increases executive control network resting state functional connectivity in healthy volunteers.
        Int J Neuropsychopharmacol. 2016; 19
        • Zuardi A.W.
        • Crippa J.A.
        • Hallak J.E.
        • Bhattacharyya S.
        • Atakan Z.
        • Martin-Santos R.
        • et al.
        A critical review of the antipsychotic effects of cannabidiol: 30 years of a translational investigation.
        Curr Pharm Des. 2012; 18: 5131-5140
        • Crippa J.A.
        • Zuardi A.W.
        • Garrido G.E.
        • Wichert-Ana L.
        • Guarnieri R.
        • Ferrari L.
        • et al.
        Effects of cannabidiol (CBD) on regional cerebral blood flow.
        Neuropsychopharmacology. 2004; 29: 417-426
        • Crippa J.A.
        • Derenusson G.N.
        • Ferrari T.B.
        • Wichert-Ana L.
        • Duran F.L.
        • Martin-Santos R.
        • et al.
        Neural basis of anxiolytic effects of cannabidiol (CBD) in generalized social anxiety disorder: a preliminary report.
        J Psychopharmacol. 2011; 25: 121-130
        • Thomas A.
        • Baillie G.L.
        • Phillips A.M.
        • Razdan R.K.
        • Ross R.A.
        • Pertwee R.G.
        Cannabidiol displays unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists in vitro.
        Br J Pharmacol. 2007; 150: 613-623
        • Bhattacharyya S.
        • Morrison P.D.
        • Fusar-Poli P.
        • Martin-Santos R.
        • Borgwardt S.
        • Winton-Brown T.
        • et al.
        Opposite effects of delta-9-tetrahydrocannabinol and cannabidiol on human brain function and psychopathology.
        Neuropsychopharmacology. 2010; 35: 764-774
        • Fadda P.
        • Robinson L.
        • Fratta W.
        • Pertwee R.G.
        • Riedel G.
        Differential effects of THC- or CBD-rich cannabis extracts on working memory in rats.
        Neuropharmacology. 2004; 47: 1170-1179
        • Christensen R.
        • Kristensen P.K.
        • Bartels E.M.
        • Bliddal H.
        • Astrup A.
        Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials.
        Lancet. 2007; 370: 1706-1713
        • Griebel G.
        • Stemmelin J.
        • Scatton B.
        Effects of the cannabinoid CB1 receptor antagonist rimonabant in models of emotional reactivity in rodents.
        Biol Psychiatry. 2005; 57: 261-267
        • Ramaekers J.G.
        • Kauert G.
        • Theunissen E.L.
        • Toennes S.W.
        • Moeller M.R.
        Neurocognitive performance during acute THC intoxication in heavy and occasional cannabis users.
        J Psychopharmacol. 2009; 23: 266-277
        • Gloss D.
        • Vickrey B.
        Cannabinoids for epilepsy.
        Cochrane Database Syst Rev. 2012; 6CD009270
        • Devinsky O.
        • Marsh E.
        • Friedman D.
        • Thiele E.
        • Laux L.
        • Sullivan J.
        • et al.
        Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial.
        Lancet Neurol. 2016; 15: 270-278