Advertisement

Genetics of cognition in epilepsy

  • Robyn M. Busch
    Correspondence
    Corresponding author at: Cleveland Clinic Epilepsy Center, Neurological Institute, 9500 Euclid Avenue, P57, Cleveland, OH 44195, USA. Tel.: +1 216 444 9042; fax: +1 216 444 4525.
    Affiliations
    Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA

    Department of Psychiatry & Psychology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA

    Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
    Search for articles by this author
  • Imad Najm
    Affiliations
    Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA

    Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
    Search for articles by this author
  • Bruce P. Hermann
    Affiliations
    Charles Matthew Neuropsychology Section, Department of Neurology, University of Wisconsin, Madison, WI, USA
    Search for articles by this author
  • Charis Eng
    Affiliations
    Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
    Search for articles by this author

      Highlights

      • Cognitive functions are highly heritable and likely polygenic.
      • APOE, BDNF, and COMT are involved in memory and executive functioning.
      • Genetic anomalies underlie many epilepsy syndromes with cognitive impairments.
      • The role of genetic factors in nonsyndromic focal epilepsies is largely unknown.
      • Clinical data and surgical specimens from epilepsy surgery patients may further knowledge of genomic factors underlying cognition.

      Abstract

      With the completion of the Human Genome Project and the advent of more advanced sequencing platforms capable of high throughput genotyping at reduced cost, research on the genetics/genomics of cognition has expanded rapidly over the past several decades. This has been facilitated even further by global consortia including HapMap, 1000 Genomes Project, ENCODE, and others, which have made information regarding genetic variation and genomic functional elements readily available to all researchers. Thus, the goal of this Targeted Review is not to provide an exhaustive review of the existing literature on the role of genetic factors in cognition. Rather, we will highlight some of the most consistent findings in this field, review the research in epilepsy to date, and provide a background within which to set forth unique opportunities epilepsy may provide to further elucidate the role of genetics in cognition.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Epilepsy & Behavior
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abecasis G.R.
        • Altshuler D.
        • Auton A.
        • Brooks L.D.
        • Durbin R.M.
        • Gibbs R.A.
        • et al.
        A map of human genome variation from population-scale sequencing.
        Nature. 2010; 467: 1061-1073
        • Abecasis G.R.
        • Auton A.
        • Brooks L.D.
        • DePristo M.A.
        • Durbin R.M.
        • Handsaker R.E.
        • et al.
        An integrated map of genetic variation from 1,092 human genomes.
        Nature. 2012; 491: 56-65
        • Pasternak J.J.
        An introduction to human molecular genetics.
        2nd ed. John Wiley & Sons, Inc., Hoboken, NJ2005
        • ENCODE Project Consortium
        The ENCODE (ENCyclopedia Of DNA Elements) Project.
        Science. 2004; 306: 636-640
        • ENCODE Project Consortium
        Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project.
        Nature. 2007; 447: 799-816
        • Gottesman I.I.
        • Gould T.D.
        The endophenotype concept in psychiatry: etymology and strategic intentions.
        Am J Psychiatry. 2003; 160: 636-645
        • Kobow K.
        • El-Osta A.
        • Blumcke I.
        The methylation hypothesis of pharmacoresistance in epilepsy.
        Epilepsia. 2013; 54 (Suppl 2:41–47)
        • Felsenfeld G.
        A brief history of epigenetics.
        Cold Spring Harb Perspect Biol. 2014; 6
        • The International HapMap Consortium
        The International HapMap Project.
        Nature. 2003; 426: 789-796
        • The International HapMap Consortium
        A haplotype map of the human genome.
        Nature. 2005; 437: 1299-1320
        • Galton F.
        Heredity, genius: an enquiry into its laws and consequences.
        Macmillan, London1869
        • Loehlin J.C.
        Partitioning environmental and genetic contributions to behavioral development.
        Am Psychol. 1989; 44: 1285-1292
        • Haworth C.M.A.
        • Wright M.J.
        • Luciano M.
        • Martin N.G.
        • de Geus E.J.C.
        • van Beijsterveldt C.E.M.
        • et al.
        The heritability of general cognitive ability increases linearly from childhood to young adulthood.
        Mol Psychiatry. 2010; 15: 1112-1120
        • Finkel D.
        • Pedersen N.L.
        • McGue M.
        • McClearn G.E.
        Heritability of cognitive abilities in adult twins: comparison of Minnesota and Swedish data.
        Behav Genet. 1995; 25: 421-431
        • American Psychiatric Association
        Diagnostic and statistical manual of mental disorders.
        5th ed. American Psychiatric Publishing, Arlington, VA2013
        • Nelson D.L.
        Mental retardation and intellectual disability.
        in: Speicher M.R. Antonarakis S.E. Motulsky A.G. Vogel and Motulsky's human genetics: problems and approaches. 4th ed. Springer-Verlag, Berlin, Heidelberg2010: 663-680
        • Glessner J.T.
        • Connolly J.J.M.
        • Hakonarson H.
        Rare genomic deletions and duplications and their role in neurodevelopmental disorders.
        Curr Top Behav Neurosci. 2012; 12: 345-360
        • Chelly J.
        • Khelfaoui M.
        • Francis F.
        • Cherif B.
        • Bienvenu T.
        Genetics and pathophysiology of mental retardation.
        Eur J Hum Genet. 2006; 14: 701-713
        • Tarpey P.S.
        • Smith R.
        • Pleasance E.
        • Whibley A.
        • Edkins S.
        • Hardy C.
        • et al.
        A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation.
        Nat Genet. 2009; 41: 535-543
      1. Finkel D. Reynolds C.A. Behavior genetics of cognition across the lifespan. Springer, New York2013
      2. Online Mendelian Inheritance in Man, OMIM®. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD) World Wide Web URL: http://omim.org/. In. Baltimore, MD: McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University.

        • van Bokhoven H.
        Genetic and epigenetic networks in intellectual disabilities.
        Annu Rev Genet. 2011; 45: 81-104
        • Corvin A.
        • Donohoe G.
        • Hargreaves A.
        • Gallagher L.
        • Gill M.
        The cognitive genetics of neuropsychiatric disorders.
        Curr Top Behav Neurosci. 2012; 12: 579-613
        • Davies G.
        • Tenesa A.
        • Payton A.
        • Yang J.
        • Harris S.E.
        • Liewald D.
        • et al.
        Genome-wide association studies establish that human intelligence is highly heritable and polygenic.
        Mol Psychiatry. 2011; 16: 996-1005
        • Kremen W.S.
        • Moore C.S.
        • Franz C.E.
        • Panizzon M.S.
        • Lyons M.J.
        Cognition in middle adulthood.
        in: Finkel D. Reynolds C.A. Behavior genetics of cognition across the lifespan. Springer, New York2013: 105-134
        • Pedersen N.L.
        • Plomin R.
        • McClearn G.E.
        Is there G beyond g? (Is there genetic influence on specific cognitive abilities independent of genetic influence on general cognitive ability?).
        Intelligence. 1994; 18: 133-143
        • Johansson B.W.K.
        • Pedersen N.L.
        • Hofer S.M.
        • Ahern F.
        • McClearn G.E.
        Origins of individual differences in episodic memory in the oldest-old: a population-based study of identical and same-sex fraternal twins aged 80 and older.
        J Gerontol B Psychol Sci Soc Sci. 1999; 54: P173-P179
        • Chang Z.
        • Lichtenstein P.
        • Asherson P.J.
        • Larsson H.
        Developmental twin study of attention problems: high heritabilities throughout development.
        JAMA Psychiatry. 2013; 70: 311-318
        • Coolidge F.L.
        • Thede L.L.
        • Jang K.L.
        Are personality disorders psychological manifestations of executive function deficits? Bivariate heritability evidence from a twin study.
        Behav Genet. 2004; 34: 75-84
        • Corder E.
        • Saunders A.
        • Strittmatter W.
        • Schmechel D.
        • Gaskell P.
        • Small G.
        • et al.
        Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families.
        Science. 1993; 261: 921-923
        • Saunders A.
        • Strittmatter W.
        • Schmechel D.
        • George-Hyslop P.
        • Pericak-Vance M.
        • Joo S.
        • et al.
        Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease.
        Neurology. 1993; 43: 1467-1472
        • Strittmatter W.
        • Saunders A.
        • Schmechel D.
        • Pericak-Vance M.
        • Enghild J.
        • Salvesen G.
        • et al.
        Apolipoprotein E: high avidity binding to beta amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer's disease.
        Proc Natl Acad Sci U S A. 1993; 90: 1977-1981
        • Ignatius M.
        • Gebicke-Harter P.
        • Skene J.
        • Schilling J.
        • Weisgraber K.
        • Mahley R.
        • et al.
        Expression of apolipoprotein E during nerve degeneration and regeneration.
        Proc Natl Acad Sci U S A. 1986; 83: 1125-1129
        • Nathan B.
        • Bellosta S.
        • Sana D.
        • Weisgraber K.
        • Mahley R.
        • Pitas R.
        Differential effects of apolipoproteins E3 and E4 on neuronal growth in vitro.
        Science. 1994; 264: 850-852
        • Bellosta S.
        • Nathan B.
        • Orth M.
        • Dong L.-M.
        • Mahley R.
        • Pitas R.
        Stable expression and secretion of apolipoproteins E3 and E4 in mouse neuroblastoma cells produces differential effects on neurite outgrowth.
        J Biol Chem. 1995; 270: 27063-27071
        • Miyata M.
        • Smith J.
        Apolipoprotein E allele-specific antioxidant activity and effects on cytotoxicity by oxidative insults and ß-amyloid peptides.
        Nat Genet. 1996; 14: 55-61
        • Marques M.
        • Tolar M.
        • Crutcher K.
        Apolipoprotein E exhibits isoform-specific neurotoxicity.
        Alzheimer Res. 1997; 3: 1-6
        • Ma J.
        • Yee A.
        • Brewer H.
        • Das S.
        • Potter H.
        Amyloid-associated proteins a 1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer ß-protein into filaments.
        Nature. 1994; 372: 92-94
        • Wisniewski T.
        • Frangione B.
        Apolipoprotein E: a pathological chaperone protein in patients with cerebral and systemic amyloid.
        Neurosci Lett. 1992; 135: 235-238
        • Sabb F.W.
        • Burggren A.C.
        • Higier R.G.
        • Fox J.
        • He J.
        • Parker D.S.
        • et al.
        Challenges in phenotype definition in the whole-genome era: multivariate models of memory and intelligence.
        Neuroscience. 2009; 164: 88-107
        • Arendt T.
        • Schindler C.
        • Bruckner M.
        • Eschrich K.
        • Bigl V.
        • Zedlick D.
        • et al.
        Plastic neuronal remodeling is impaired in patients with Alzheimer's disease carrying apolipoprotein epsilon 4 allele.
        Neuroscience. 1997; 17: 516-529
        • Lu P.H.
        • Thompson P.M.
        • Leow A.
        • Lee G.J.
        • Lee A.
        • Yanovsky I.
        • et al.
        Apolipoprotein E genotype is associated with temporal and hippocampal atrophy rates in healthy elderly adults: a tensor-based morphometry study.
        J Alzheimers Dis. 2011; 23: 433-442
        • Small B.J.
        • Rosnick C.B.
        • Fratiglioni L.
        • Backman L.
        Apolipoprotein E and cognitive performance: a meta-analysis.
        Psychol Aging. 2004; 19: 592-600
        • Pezawas L.
        • Verchinski B.A.
        • Mattay V.S.
        • Callicott J.H.
        • Kolachana B.S.
        • Straub R.E.
        • et al.
        The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology.
        J Neurosci. 2004; 24: 10099-10102
        • Huang E.J.
        • Reichardt L.F.
        • Huang E.J.
        • Reichardt L.F.
        Neurotrophins: roles in neuronal development and function.
        Annu Rev Neurosci. 2001; 24: 677-736
        • Goldberg T.E.
        • Weinberger D.R.
        • Goldberg T.E.
        • Weinberger D.R.
        Genes and the parsing of cognitive processes.
        Trends Cogn Sci. 2004; 8: 325-335
        • Montag C.
        • Weber B.
        • Fliessbach K.
        • Elger C.
        • Reuter M.
        • Montag C.
        • et al.
        The BDNF Val66Met polymorphism impacts parahippocampal and amygdala volume in healthy humans: incremental support for a genetic risk factor for depression.
        Psychol Med. 2009; 39: 1831-1839
        • Savitz J.
        • Solms M.
        • Ramesar R.
        The molecular genetics of cognition: dopamine, COMT, and BDNF.
        Genes Brain Behav. 2006; 5: 311-328
        • Hariri A.R.
        • Goldberg T.E.
        • Mattay V.S.
        • Kolachana B.S.
        • Callicott J.H.
        • Egan M.F.
        • et al.
        Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance.
        J Neurosci. 2003; 23: 6690-6694
        • Erickson K.I.
        • Kim J.S.
        • Suever B.L.
        • Voss M.W.
        • Francis B.M.
        • Kramer A.F.
        • et al.
        Genetic contributions to age-related decline in executive function: a 10-year longitudinal study of COMT and BDNF polymorphisms.
        Front Hum Neurosci. 2008; 2: 11
        • Egan M.F.
        • Goldberg T.E.
        • Kolachana B.S.
        • Callicott J.H.
        • Mazzanti C.M.
        • Straub R.E.
        • et al.
        Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia.
        Proc Natl Acad Sci U S A. 2001; 98: 6917-6922
        • Taylor W.D.
        • Züchner S.
        • Payne M.E.
        • Messer D.F.
        • Doty T.J.
        • MacFall J.R.
        • et al.
        The COMT Val158Met polymorphism and temporal lobe morphometry in healthy adults.
        Psychiatry Res. 2007; 155: 173-177
        • de Frias C.M.
        • Annerbrink K.
        • Westberg L.
        • Eriksson E.
        • Adolfsson R.
        • Nilsson L.G.
        • et al.
        COMT gene polymorphism is associated with declarative memory in adulthood and old age.
        Behav Genet. 2004; 34: 533-539
        • Elia J.
        • Sackett J.
        • Turner T.
        • Schardt M.
        • Tang S.C.
        • Kurtz N.
        • et al.
        Attention-deficit/hyperactivity disorder genomics: update for clinicians.
        Curr Psychiatry Rep. 2012; 14: 579-589
        • Thapar A.
        • Cooper M.
        • Eyre O.
        • Langley K.
        What have we learnt about the causes of ADHD?.
        J Child Psychol Psychiatry. 2013; 54: 3-16
        • Gejman P.V.
        • Sanders A.R.
        • Kendler K.S.
        Genetics of schizophrenia: new findings and challenges.
        Annu Rev Genomics Hum Genet. 2011; 12: 121-144
        • Sullivan P.F.
        • Daly M.J.
        • O'Donovan M.
        Genetic architectures of psychiatric disorders: the emerging picture and its implications.
        Nat Rev Genet. 2012; 13: 537-551
        • Abrahams B.S.
        • Geschwind D.H.
        Advances in autism genetics: on the threshold of a new neurobiology.
        Nat Rev Genet. 2008; 9: 341-355
        • Ioannidis J.P.A.
        Why most published research findings are false.
        PLoS Med. 2005; 2: e124
        • Feliciano D.M.
        • Lin T.V.
        • Hartman N.W.
        • Bartley C.M.
        • Kubera C.
        • Hsieh L.
        • et al.
        A circuitry and biochemical basis for tuberous sclerosis symptoms: from epilepsy to neurocognitive deficits.
        Int J Dev Neurosci. 2013; 31: 667-678
        • Novegno F.
        • Massimi L.
        • Di Rocco C.
        Epilepsy in tuberous sclerosis complex.
        Adv Tech Stand Neurosurg. 2012; 39: 131-163
        • Crino P.B.
        • Nathanson K.L.
        • Petri Henske E.
        The tuberous sclerosis complex.
        N Engl J Med. 2006; 355: 1345-1356
        • O'Callaghan F.J.
        • Harris T.
        • Joinson C.
        • Bolton P.
        • Noakes M.
        • Presdee D.
        • et al.
        The relation of infantile spasms, tubers, and intelligence in tuberous sclerosis complex.
        Arch Dis Child. 2004; 89: 530-533
        • Joinson C.
        • O'Callaghan F.J.
        • Osborne J.P.
        • Martyn C.
        • Harris T.
        • Bolton P.F.
        Learning disability and epilepsy in an epidemiological sample of individuals with tuberous sclerosis complex.
        Psychol Med. 2003; 33: 335-344
        • Winterkorn E.B.
        • Pulsifer M.B.
        • Thiele E.A.
        Cognitive prognosis of patients with tuberous sclerosis complex.
        Neurology. 2007; 68: 62-64
        • van Eeghen A.M.
        • Black M.E.
        • Pulsifer M.B.
        • Kwiatkowski D.J.
        • Thiele E.A.
        Genotype and cognitive phenotype of patients with tuberous sclerosis complex.
        Eur J Hum Genet. 2012; 20: 510-515
        • de Vries P.J.
        • Gardiner J.
        • Bolton P.F.
        Neuropsychological attention deficits in tuberous sclerosis complex (TSC).
        Am J Med Genet A. 2009; 149A: 387-395
        • Harrison J.E.
        • O'Callaghan F.J.
        • Hancock E.
        • Osborne J.P.
        • Bolton P.F.
        Cognitive deficits in normally intelligent patients with tuberous sclerosis.
        Am J Med Genet. 1999; 88: 642-646
        • Ridler K.
        • Suckling J.
        • Higgins N.J.
        • de Vries P.J.
        • Stephenson C.M.
        • Bolton P.F.
        • et al.
        Neuroanatomical correlates of memory deficits in tuberous sclerosis complex.
        Cereb Cortex. 2007; 17: 261-271
        • Tuchman R.
        • Moshe S.L.
        • Rapin I.
        Convulsing toward the pathophysology of autism.
        Brain Dev. 2009; 31: 95-103
        • Carlier M.
        • Roubertoux P.L.
        Genetic and environmental influences on intellectual disability in childhood.
        in: Finkel D. Reynolds C.A. Behavior genetics of cognition across the lifespan. Springer, New York2013: 69-101
        • Gambardella A.
        • Aguglia U.
        • Chifari R.
        • Labate A.
        • Manna L.
        • Serra P.
        • et al.
        ApoE epsilon4 allele and disease duration affect verbal learning in mild temporal lobe epilepsy.
        Epilepsia. 2005; 46: 110-117
        • Busch R.M.
        • Lineweaver T.T.
        • Naugle R.I.
        • Kim K.H.
        • Gong Y.
        • Tilelli C.Q.
        • et al.
        ApoE-epsilon4 is associated with reduced memory in long-standing intractable temporal lobe epilepsy.
        Neurology. 2007; 68: 409-414
        • Palanisamy A.
        • Rajendran N.N.
        • Narmadha M.P.
        • Ganesvaran R.A.
        Association of apolipoprotein E epsilon4 allele with cognitive impairment in patients with epilepsy and interaction with phenytoin monotherapy.
        Epilepsy Behav. 2013; 26: 165-169
        • Coimbra E.R.
        • Rezek K.
        • Escorsi-Rosset S.
        • Landemberger M.C.
        • Castro R.M.
        • Valadao M.N.
        • et al.
        Cognitive performance of patients with mesial temporal lobe epilepsy is not associated with human prion protein gene variant allele at codons 129 and 171.
        Epilepsy Behav. 2006; 8: 635-642
        • Manna I.
        • Labate A.
        • Mumoli L.
        • Palamara G.
        • Ferlazzo E.
        • Aguglia U.
        • et al.
        A functional genetic variation of the 5-HTR2A receptor affects age at onset in patients with temporal lobe epilepsy.
        Ann Hum Genet. 2012; 76: 277-282
        • Chin J.
        • Scharfman H.E.
        Shared cognitive and behavioral impairments in epilepsy and Alzheimer's disease and potential underlying mechanisms.
        Epilepsy Behav. 2013; 26: 343-351
        • Papassotiropoulos A.
        • de Quervain D.J.
        Genetics of human episodic memory: dealing with complexity.
        Trends Cogn Sci. 2011; 15: 381-387
        • Ewbank D.C.
        Mortality differences by APOE genotype estimated from demographic synthesis.
        Genet Epidemiol. 2002; 22: 146-155
        • Kremen W.S.
        • Jacobson K.C.
        • Panizzon M.S.
        • Xian H.
        • Eaves L.J.
        • Eisen S.A.
        • et al.
        Factor structure of planning and problem-solving: a behavioral genetic analysis of the Tower of London task in middle-aged twins.
        Behav Genet. 2009; 39: 133-144
        • Panizzon M.S.
        • Lyons M.J.
        • Jacobson K.C.
        • Franz C.E.
        • Grant M.D.
        • Eisen S.A.
        • et al.
        Genetic architecture of learning and delayed recall: a twin study of episodic memory.
        Neuropsychology. 2011; 25: 488-498
        • Ronan J.L.
        • Wu W.
        • Crabtree G.R.
        From neural development to cognition: unexpected roles for chromatin.
        Nat Rev Genet. 2013; 14: 347-359
        • Day J.J.
        • Sweatt J.D.
        Epigenetic mechanisms in cognition.
        Neuron. 2011; 70: 813-829
        • Kosik K.S.
        • Rapp P.R.
        • Raz N.
        • Small S.A.
        • Sweatt J.D.
        • Tsai L.H.
        Mechanisms of age-related cognitive change and targets for intervention: epigenetics.
        J Gerontol A Biol Sci Med Sci. 2012; 67: 741-746
        • Fischer A.
        • Sananbenesi F.
        • Wang X.
        • Dobbin M.
        • Tsai L.H.
        Recovery of learning and memory is associated with chromatin remodelling.
        Nature. 2007; 447: 178-182
        • Peleg S.
        • Sananbenesi F.
        • Zovoilis A.
        • Burkhardt S.
        • Bahari-Javan S.
        • Agis-Balboa R.C.
        • et al.
        Altered histone acetylation is associated with age-dependent memory impairment in mice.
        Science. 2010; 328: 753-756
        • Finkel D.
        • Pedersen N.
        • McGue M.
        Genetic influences on memory performance in adulthood: comparison of Minnesota and Swedish twin data.
        Psychol Aging. 1995; 10: 437-446
        • Kremen W.S.
        • Lyons M.J.
        Behavior genetics of aging.
        in: Schaie K.W. Willis S.L. Handbook of the psychology of aging. Elsevier, San Diego2011: 93-107
        • Kremen W.S.
        • Eisen S.A.
        • Tsuang M.T.
        • Lyons M.J.
        Is the Wisconsin Card Sorting Test a useful neurocognitive endophenotype?.
        Am J Med Genet B Neuropsychiatr Genet. 2007; 144B: 403-406
        • Chou L.N.
        • Kuo P.H.
        • Lin C.C.
        • Chen W.J.
        Genetic and environmental influences on the Wisconsin Card Sorting Test performance in healthy adolescents: a twin/sibling study.
        Behav Genet. 2010; 40: 22-30
        • Huentelman M.J.
        • Papassotiropoulos A.
        • Craig D.W.
        • Hoerndli F.J.
        • Pearson J.V.
        • Huynh K.D.
        • et al.
        Calmodulin-binding transcription activator 1 (CAMTA1) alleles predispose human episodic memory performance.
        Hum Mol Genet. 2007; 16: 1469-1477
        • Magnin E.
        • Blagosklonov O.
        • Sylvestre G.
        • Minot D.
        • Thevenon J.
        • Faivre L.
        • et al.
        Neuropsychological and neuroimaging phenotype induced by a CAMTA1 mutation.
        Brain Dev. 2013; https://doi.org/10.1016/j.braindev.2013.09.008
        • Papassotiropoulos A.
        • Stephan D.A.
        • Huentelman M.J.
        • Hoerndli F.J.
        • Craig D.W.
        • Pearson J.V.
        • et al.
        Common Kibra alleles are associated with human memory performance.
        Science. 2006; 314: 475-478
        • Thompson P.M.
        • Stein J.L.
        • Medland S.E.
        • Hibar D.P.
        The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data.
        Brain Imaging Behav. 2014; 8: 153-182
        • Preuschhof C.
        • Heekeren H.R.
        • Li S.C.
        • Sander T.
        • Lindenberger U.
        • Backman L.
        KIBRA and CLSTN2 polymorphisms exert interactive effects on human episodic memory.
        Neuropsychologia. 2010; 48: 402-408
        • Flint J.
        • Munafo M.R.
        The endophenotype concept in psychiatric genetics.
        Psychol Med. 2007; 37: 163-180
        • Papassotiropoulos A.
        • Stefanova E.
        • Vogler C.
        • Geschwind L.
        • Ackermann S.
        • Spalek K.
        • et al.
        A genome-wide survey and functional brain imaging study identify CTNNBL1 as a memory-related gene.
        Mol Psychiatry. 2013; 18: 255-263
        • Graff J.
        • Tsai L.H.
        The potential of HDAC inhibitors as cognitive enhancers.
        Annu Rev Pharmacol Toxicol. 2013; 53: 311-330
        • Day J.J.
        • Sweatt J.D.
        Epigenetic treatments for cognitive impairments.
        Neuropsychopharmacology. 2012; 37: 247-260
        • Cummings J.L.
        • Cole G.
        Alzheimer disease.
        JAMA. 2002; 287: 2335-2338
        • Jacobsen L.K.
        • Picciotto M.R.
        • Heath C.J.
        • Mencl W.E.
        • Gelernter J.
        Allelic variation of calsyntenin 2 (CLSTN2) modulates the impact of developmental tobacco smoke exposure on mnemonic processing in adolescents.
        Biol Psychiatry. 2009; 65: 671-679
        • Egan M.F.
        • Straub R.E.
        • Goldberg T.E.
        • Yakub I.
        • Callicott J.H.
        • Hariri A.R.
        • et al.
        Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia.
        Proc Natl Acad Sci U S A. 2004; 101: 12604-12609
        • de Quervain D.J.
        • Papassotiropoulos A.
        Identification of a genetic cluster influencing memory performance and hippocampal activity in humans.
        Proc Natl Acad Sci U S A. 2006; 103: 4270-4274
        • Jablensky A.
        • Morar B.
        • Wiltshire S.
        • Carter K.
        • Dragovic M.
        • Badcock J.C.
        • et al.
        Polymorphisms associated with normal memory variation also affect memory impairment in schizophrenia.
        Genes Brain Behav. 2011; 10: 410-417
        • de Quervain D.J.
        • Henke K.
        • Aerni A.
        • Coluccia D.
        • Wollmer M.A.
        • Hock C.
        • et al.
        A functional genetic variation of the 5-HT2a receptor affects human memory.
        Nat Neurosci. 2003; 6: 1141-1142
        • Sigmund J.C.
        • Vogler C.
        • Huynh K.D.
        • de Quervain D.J.
        • Papassotiropoulos A.
        Fine-mapping at the HTR2A locus reveals multiple episodic memory-related variants.
        Biol Psychol. 2008; 79: 239-242
        • Wagner M.
        • Schuhmacher A.
        • Schwab S.
        • Zobel A.
        • Maier W.
        The His452Tyr variant of the gene encoding the 5-HT2A receptor is specifically associated with consolidation of episodic memory in humans.
        Int J Neuropsychopharmacol. 2008; 11: 1163-1167
        • Papassotiropoulos A.
        • Henke K.
        • Aerni A.
        • Coluccia D.
        • Garcia E.
        • Wollmer M.A.
        • et al.
        Age-dependent effects of the 5-hydroxytryptamine-2a-receptor polymorphism (His452Tyr) on human memory.
        NeuroReport. 2005; 16: 839-842
        • Reynolds C.A.
        • Jansson M.
        • Gatz M.
        • Pedersen N.L.
        Longitudinal change in memory performance associated with HTR2A polymorphism.
        Neurobiol Aging. 2006; 27: 150-154
        • Milnik A.
        • Heck A.
        • Vogler C.
        • Heinze H.J.
        • de Quervain D.J.
        • Papassotiropoulos A.
        Association of KIBRA with episodic and working memory: a meta-analysis.
        Am J Med Genet B Neuropsychiatr Genet. 2012; 159B: 958-969
        • Kolsch H.
        • Wagner M.
        • Bilkei-Gorzo A.
        • Toliat M.R.
        • Pentzek M.
        • Fuchs A.
        • et al.
        Gene polymorphisms in prodynorphin (PDYN) are associated with episodic memory in the elderly.
        J Neural Transm. 2009; 116: 897-903
        • Lopez L.M.
        • Harris S.E.
        • Luciano M.
        • Liewald D.
        • Davies G.
        • Gow A.J.
        • et al.
        Evolutionary conserved longevity genes and human cognitive abilities in elderly cohorts.
        Eur J Hum Genet. 2012; 20: 341-347
        • Ferini-Strambi L.
        • Sansoni V.
        • Combi R.
        Nocturnal frontal lobe epilepsy and the acetylcholine receptor.
        Neurologist. 2012; 18: 343-349
        • Wood A.G.
        • Saling M.M.
        • Fedi M.
        • Berkovic S.F.
        • Scheffer I.E.
        • Benjamin C.
        • et al.
        Neuropsychological function in patients with a single gene mutation associated with autosomal dominant nocturnal frontal lobe epilepsy.
        Epilepsy Behav. 2010; 17: 531-535
        • MacAllister W.S.
        • Schaffer S.G.
        Neuropsychological deficits in childhood epilepsy syndromes.
        Neuropsychol Rev. 2007; 17: 427-444
        • Smith A.B..
        • Kavros P.M.
        • Clarke T.
        • Dorta N.J.
        • Tremont G.
        • Pal D.K.
        A neurocognitive endophenotype associated with rolandic epilepsy.
        Epilepsia. 2012; 53: 705-711
        • Pavone P.
        • Spalice A.
        • Polizzi A.
        • Parisi P.
        • Ruggieri M.
        Ohtahara syndrome with emphasis on recent genetic discovery.
        Brain Dev. 2012; 34: 459-468
        • Nakamura K.
        • Kato M.
        • Osaka H.
        • Yamashita S.
        • Nakagawa E.
        • Haginoya K.
        • et al.
        Clinical spectrum of SCN2A mutations expanding to Ohtahara syndrome.
        Neurology. 2013; 81: 992-998
        • Kato M.
        • Yamagata T.
        • Kubota M.
        • Arai H.
        • Yamashita S.
        • Nakagawa T.
        • et al.
        Clinical spectrum of early onset epileptic encephalopathies caused by KCNQ2 mutation.
        Epilepsia. 2013; 54: 1282-1287
        • Dibbens L.M.
        • Tarpey P.S.
        • Hynes K.
        • Bayly M.A.
        • Scheffer I.E.
        • Smith R.
        • et al.
        X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment.
        Nat Genet. 2008; 40: 776-781
        • Scheffer I.E.
        • Turner S.J.
        • Dibbens L.M.
        • Bayly M.A.
        • Friend K.
        • Hodgson B.
        • et al.
        Epilepsy and mental retardation limited to females: an under-recognized disorder.
        Brain. 2008; 131: 918-927
        • Carvill G.L.
        • Regan B.M.
        • Yendle S.C.
        • O'Roak B.J.
        • Lozovaya N.
        • Bruneau N.
        • et al.
        GRIN2A mutations cause epilepsy-aphasia spectrum disorders.
        Nat Genet. 2013; 45: 1073-1076
        • Roll P.
        • Rudolf G.
        • Pereira S.
        • Royer B.
        • Scheffer I.E.
        • Massacrier A.
        • et al.
        SRPX2 mutations in disorders of language cortex and cognition.
        Hum Mol Genet. 2006; 15: 1195-1207
        • Striano P.
        • Coppola G.
        • Zara F.
        • Nabbout R.
        Genetic heterogeneity in malignant migrating partial seizures of infancy.
        Ann Neurol. 2014; 75: 324-326
        • Carranza Rojo D.
        • Hamiwka L.
        • McMahon J.M.
        • Dibbens L.M.
        • Arsov T.
        • Suls A.
        • et al.
        De novo SCN1A mutations in migrating partial seizures of infancy.
        Neurology. 2011; 77: 380-383
        • Ragona F.
        Cognitive development in children with Dravet syndrome.
        Epilepsia. 2011; 52: 39-43
        • Bender A.C.
        • Morse R.P.
        • Scott R.C.
        • Holmes G.L.
        • Lenck-Santini P.P.
        SCN1A mutations in Dravet syndrome: impact of interneuron dysfunction on neural networks and cognitive outcome.
        Epilepsy Behav. 2012; 23: 177-186
        • Marini C.
        • Scheffer I.E.
        • Nabbout R.
        • Suls A.
        • De Jonghe P.
        • Zara F.
        • et al.
        The genetics of Dravet syndrome.
        Epilepsia. 2011; 52: 24-29
        • Miller I.O.
        • Sotero de Menezes M.A.
        SCN1A-related seizure disorders.
        in: Pagon R.A. Adam M.P. Bird T.D. Dolan C.R. Fong C.T. Stephens K. GeneReviews. University of Washington, Seattle, Seattle WA1993
        • Gambardella A.
        • Marini C.
        Clinical spectrum of SCN1A mutations.
        Epilepsia. 2009; 50: 20-23