Research Article| Volume 26, ISSUE 1, P118-125, January 2013

Download started.


Long-term home monitoring of hypermotor seizures by patient-worn accelerometers


      Long-term home monitoring of epileptic seizures is not feasible with the gold standard of video/electro-encephalography (EEG) monitoring. The authors developed a system and algorithm for nocturnal hypermotor seizure detection in pediatric patients based on an accelerometer (ACM) attached to extremities. Seizure detection is done using normal movement data, meaning that the system can be installed in a new patient's room immediately as prior knowledge on the patient's seizures is not needed for the patient-specific model.
      In this study, the authors compared video/EEG-based seizure detection with ACM data in seven patients and found a sensitivity of 95.71% and a positive predictive value of 57.84%.
      The authors focused on hypermotor seizures given the availability of this seizure type in the data, the typical occurrence of these seizures during sleep, i.e., when the measurements were done, and the importance of detection of hypermotor seizures given their often refractory nature and the possible serious consequences. To our knowledge, it is the first detection system focusing on this type of seizure in pediatric patients.


      • First to focus on nocturnal hypermotor seizures in pediatric patients.
      • Ambulant movement detection compared to video/EEG-based detection.
      • Sensitivity of 95.71% and PPV of 57.84%.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Epilepsy & Behavior
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Massé F.
        • Penders J.
        • Sereteyn A.
        • Van Bussel M.
        • Arends J.
        Miniaturized wireless ECG-monitor for real-time detection of epileptic seizures.
        in: Proc Wireless Health. 2010: 111-117
      1. Sudden unexpected death in epilepsy: continuing the global conversation.
        in: Chapman D. Panelli R. Hanna J. Jeffs T. Epilepsy Australia, Epilepsy Bereaved UK & SUDEP Aware, Camberwell, Australia. 2011: 117
        • Bonnet S.
        • Héliot R.
        A magnetometer-based approach for studying human movements.
        IEEE Trans Biomed Eng. 2007; 54: 1353-1355
        • Cuppens K.
        • Omloop S.
        • Colleman P.
        • Ceulemans B.
        • Vanrumste B.
        Detection of nocturnal frontal lobe seizures in pediatric patients by means of accelerometers: preliminary results.
        Conf Proc IEEE Eng Med Biol Soc. 2007; (Benelux): 1-4
        • Cuppens K.
        • Lagae L.
        • Ceulemans B.
        • Van Huffel S.
        • Vanrumste B.
        Detection of nocturnal frontal lobe seizures in pediatric patients by means of accelerometers: a first study.
        Conf Proc IEEE Eng Med Biol Soc. 2009; : 6608-6611
        • Decaigny A.S.
        • Cuppens K.
        • Lagae L.
        • Ceulemans B.
        • Van Huffel S.
        • Vanrumste B.
        Accelerometers used for the detection of nocturnal frontal lobe seizures in pediatric patients.
        in: Proc. of the ECUMICT. 2010: 331-342
        • Cuppens K.
        • Lagae L.
        • Ceulemans B.
        • Van Huffel S.
        • Vanrumste B.
        Automatic video detection of body movement during sleep based on optical flow in pediatric patients with epilepsy.
        Med Biol Eng Comput. 2010; 48: 923-931
        • Van Looy W.
        • Cuppens K.
        • Bonroy B.
        • et al.
        Detection of body movement using optical flow and clustering.
        in: Proc. of the 2nd International Conf. on Positioning and Context-Awareness (PoCA). 2011: 29-35
        • Cuppens K.
        • Bonroy B.
        • Van de Vel A.
        • et al.
        Automatic video detection of nocturnal epileptic movement based on motion tracks.
        in: Proc. of the International Conf. on Bio-inspired Systems and Signal Processing (biosignals). 2012: 342-345
        • Cuppens K.
        • Wong K.
        • Chen L.
        • et al.
        Using spatio-temporal interest points (STIP) for myoclonic jerk detection in nocturnal video.
        in: Conf Proc IEEE Eng Med Biol Soc. 2012: 4454-4457
        • Osorio I.
        • Schachter S.
        Extracerebral detection of seizures: a new era in epileptology?.
        Epilepsy Behav. 2011; 22S: 82-87
        • Husain A.M.
        • Sinha S.R.
        Nocturnal epilepsy in adults.
        J Clin Neurophysiol. 2011; 28: 141-145
        • Azar N.J.
        • Tayah T.F.
        • Wang L.
        • Song Y.
        • Abou-Khalil B.W.
        Postictal breathing pattern distinguishes epileptic from nonepileptic convulsive seizures.
        Epilepsia. 2008; 49: 132-137
        • Engel J.J.
        Report of the ILAE Classification Core Group.
        Epilepsia. 2006; 47: 1558-1568
        • Rémi J.
        • Silva Cunha J.P.
        • Vollmar C.
        • et al.
        Quantitative movement analysis differentiates focal seizures characterized by automatisms.
        Epilepsy Behav. 2011; 20: 642-647
        • Tinuper P.
        • Provini F.
        • Bisulli F.
        • Lugaresi E.
        Hyperkinetic manifestations in nocturnal frontal lobe epilepsy. Semeiological features and physiopathological hypothesis.
        Neurol Sci. 2005; 26: 210-214
        • Tinuper P.
        • Provini F.
        • Bisulli F.
        • et al.
        Movement disorders in sleep: guidelines for differentiating epileptic from non-epileptic motor phenomena arising from sleep.
        Sleep Med Rev. 2007; 11: 255-267
        • Loddenkemper T.
        • Vendrame M.
        • Zarowski M.
        • et al.
        Circadian patterns of pediatric seizures.
        Neurology. 2011; 76: 145-153
        • Nijssen T.M.E.
        • Aarts R.M.
        • Cluitmans P.J.M.
        • Griep P.A.M.
        Time–frequency analysis of accelerometry data for detection of myoclonic seizures.
        IEEE Trans Inf Technol Biomed. 2010; 14: 1197-1203
        • Nijssen T.M.E.
        • Aarts R.M.
        • Arends J.B.A.M.
        • Cluitmans P.J.M.
        Automated detection of tonic seizures using 3-D accelerometry.
        in: IFMBE Proc. 22. 2008: 188-191
        • Jallon P.
        A Bayesian approach for epileptic seizures detection with 3D accelerometers.
        Conf Proc IEEE Eng Med Biol Soc. 2010; : 6325-6328
        • Schulc E.
        • Unterberger I.
        • Saboor S.
        • et al.
        Measurement and quantification of generalized tonic-clonic seizures in epilepsy patients by means of accelerometry—an explorative study.
        Epilepsy Res. 2011; 95: 173-183
        • Lockman J.
        • Fisher R.S.
        • Olson D.M.
        Detection of seizure-like movements using a wrist accelerometer.
        Epilepsy Behav. 2011; 20: 638-641
        • Kramer U.
        • Kipervasser S.
        • Shlitner A.
        • Kuzniecky R.
        A novel portable seizure detection alarm system: preliminary results.
        J Clin Neurophysiol. 2011; 28: 36-38