Advertisement
Review| Volume 2, ISSUE 6, P524-532, December 2001

Download started.

Ok

Herbal Medicines and Epilepsy: The Potential for Benefit and Adverse Effects

      This paper is only available as a PDF. To read, Please Download here.

      Abstract

      The widespread availability and use of herbal medicines raise the potential for adverse effects in the epilepsy population. Herbal sedatives (kava, valerian, chamomile, passionflower) may potentiate the effects of antiepileptic medications, increasing their sedative and cognitive effects. Despite some antiseizure effects in animal models, they should not be used in place of standard seizure medications because efficacy has not been established. Anecdotal, uncontrolled observations suggest that herbal stimulants containing ephedrine (ephedra or ma huang) and caffeine (cocoa, coffee, tea, maté, guarana, cola or kola) can exacerbate seizures in people with epilepsy, especially when taken in combination. Ginkgo and ginseng may also exacerbate seizures although the evidence for this is similarly anecdotal and uncertain. St. John's wort has the potential to alter medication pharmacokinetics and the seizure threshold. The essential oils of many plants contain epileptogenic compounds. There is mixed evidence for evening primrose and borage lowering the seizure threshold. Education of both health care providers and patients is the best way to avoid unintentional and unnecessary adverse reactions to herbal medicines.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Epilepsy & Behavior
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      REFERENCES

        • Eisenberg DM
        • Davis RB
        • Ettner SL
        • Appel S
        • Wilkey S
        • Van Rompay M
        • Kessler RC
        Trends in alternative medicine use in the United States, 1990–1997: results of a follow-up national survey.
        JAMA. 1998; 280: 1569-1575
        • Peebles CT
        • McAuley JW
        • Roach J
        • Moore JL
        • Reeves AL
        Alternative medicine use by patients with epilepsy.
        Epilepsy Behav. 2000; 1: 74-77
        • Danesi MA
        • Adetunji JB
        Use of alternative medicine by patients with epilepsy: a survey of 265 epileptic patients in a developing country.
        Epilepsia. 1994; 35: 344-351
        • Frenkel M
        • Arye EB
        The growing need to teach about complementary and alternative medicine: questions and challenges.
        Acad Med. 2001; 76: 251-254
        • Lebot V
        • Merlin M
        • Lindstrom L
        Kava—the Pacific elixir: the definitive guide to its ethnobotany, history, and chemistry. Healing Arts Press, Rochester1997
        • Pittler M II
        • Ernst E
        Efficacy of kava extract for treating anxiety: systematic review and meta-analysis.
        J Clin Psychopharmacol. 2000; 20: 84-89
        • Boonen G
        • Haberlein H
        Influence of genuine kavapyrone enantiomers on the GABA-A binding site.
        Planta Med. 1998; 64: 504-506
        • Jussofie A
        • Schmiz A
        • Hiemke C
        Kavapyrone enriched extract from Piper methysticum as modulator of the GABA binding site in different regions of rat brain.
        Psychopharmacology (Berlin). 1994; 116: 469-474
        • Davies LP
        • Drew CA
        • Duffield P
        • Johnston GA
        • Jamieson DD
        Kava pyrones and resin: studies on GABAA, GABAB and benzodiazepine binding sites in rodent brain.
        Pharmacol Toxicol. 1992; 712: 120-126
        • Keledjian J
        • Duffield PH
        • Jamieson DD
        • Lidgard RO
        • Duffield AM
        Uptake into mouse brain of four compounds present in the psychoactive beverage kava.
        J Pharm Sci. 1988; 77: 1003-1006
        • Gleitz J
        • Beile A
        • Peters T
        (+/−)-Kavain inhibits veratridine-activated voltage-dependent Na(+)-channels in synaptosomes prepared from rat cerebral cortex.
        Neuropharmacology. 1995; 34: 1133-1138
        • Magura EI
        • Kopanitsa MV
        • Gleitz J
        • Peters T
        • Krishtal OA
        Kava extract ingredients, (+)-methysticin and (+/−)-kavain inhibit voltage-operated Na(+)-channels in rat CA1 hippocampal neurons.
        Neuroscience. 1997; 81: 345-351
        • Schirrmacher K
        • Busselberg D
        • Langosch JM
        • Walden J
        • Winter U
        • Bingmann D
        Effects of (+/−)-kavain on voltage-activated inward currents of dorsal root ganglion cells from neonatal rats.
        Eur Neuropsychopharmacol. 1999; 9: 171-176
        • Gleitz J
        • Friese J
        • Beile A
        • Ameri A
        • Peters T
        Anticonvulsive action of (+/−)-kavain estimated from its properties on stimulated synaptosomes and Na+ channel receptor sites.
        Eur J Pharmacol. 1996; 315: 89-97
        • Holm E
        • Staedt U
        • Heep J
        • Kortsik C
        • Behne F
        • Kaske A
        • Mennicke I
        [The action profile of d,l-kavain. Cerebral sites and sleep–wakefulness-rhythm in animals].
        Arzneimittelforschung. 1991; 41: 673-683
        • Frey R
        [Demonstration of the central effects of d,l-kawain with EEG brain mapping].
        Fortschr Med. 1991; 30;109: 505-508
        • Foo H
        • Lemon J
        Acute effects of kava, alone or in combination with alcohol, on subjective measures of impairment and intoxication and on cognitive performance.
        Drug Alc Rev. 1997; 16: 147-155
        • Kretzschmar R
        • Meyer HJ
        • Teschendorf HJ
        • Zollner B
        [Antagonistic action of natural 5,6-hydrogenated kava pyrones against strychnine poisoning and experimental local tetanus].
        Arch Int Pharmacodyn Ther. 1969; 182: 251-268
        • Jamieson DD
        • Duffield PH
        • Cheng D
        • Duffield AM
        Comparison of the central nervous system activity of the aqueous and lipid extract of kava (Piper methysticum).
        Arch Int Pharmacodyn Ther. 1989; 301: 66-80
        • Gleitz J
        • Beile A
        • Peters T
        (+/−)-Kavain inhibits the veratridine- and KCl-induced increase in intracellular Ca2+ and glutamate-release of rat cerebrocortical synaptosomes.
        Neuropharmacology. 1996; 35: 179-186
        • Langosch JM
        • Normann C
        • Schirrmacher K
        • Berger M
        • Walden J
        The influence of (+/−)-kavain on population spikes and long-term potentiation in guinea pig hippocampal slices.
        Comp Biochem Physiol A. 1998; 120: 545-549
        • Duffield PH
        • Jamieson D
        Development of tolerance to kava in mice.
        Clin Exp Pharmacol Physiol. 1991; 18: 571-578
        • Temkin O
        The falling sickness: a history of epilepsy from the Greeks to the beginnings of modern neurology. Johns Hopkins Univ Press, Baltimore1971
        • Leathwood PD
        • Chauffard F
        • Heck E
        • Munoz-Box R
        Aqueous extract of valerian root (Valeriana officinalis L.) improves sleep quality in man.
        Pharmacol Biochem Behav. 1982; 17: 65-71
        • Schulz H
        • Stolz C
        • Muller J
        The effect of valerian extract on sleep polygraphy in poor sleepers: a pilot study.
        Pharmacopsychiatry. 1994; 27: 147-151
        • Gerhard U
        • Linnenbrink N
        • Georghiadou C
        • Hobi V
        [Vigilance-decreasing effects of 2 plant-derived sedatives].
        Schweiz Rundsch Med Prax. 1996; 85: 473-481
        • Houghton PJ
        The scientific basis for the reputed activity of valerian.
        J Pharm Pharmacol. 1999; 51: 505-512
        • Santos MS
        • Ferreira F
        • Faro C
        • Pires E
        • Carvalho AP
        • Cunha AP
        • Macedo T
        The amount of GABA present in aqueous extracts of valerian is sufficient to account for [3H]GABA release in synaptosomes.
        Planta Med. 1994; 60: 475-476
        • Riedel E
        • Hansel R
        • Ehrke G
        [Inhibition of gamma-aminobutyric acid catabolism by valerenic acid derivatives].
        Planta Med. 1982; 46: 219-220
        • Ortiz JG
        • Nieves-Natal J
        • Chavez P
        Effects of Valeriana officinalis extracts on [3H]flunitrazepam binding, synaptosomal [3H]GABA uptake, and hippocampal [3H]GABA release.
        Neurochem Res. 1999; 24: 1373-1378
        • Dunaev VV
        • Trzhetsinskii SD
        • Tishkin VS
        • Fursa NS
        • Linenko VI
        [Biological activity of the sum of the valepotriates isolated from Valeriana alliariifolia].
        Farmakol Toksikol. 1987; 50: 33-37
        • Hölzl J
        • Fink C
        [Effect of valeprotriate on spontaneous motor activity in mice].
        Arzneimittelforschung. 1984; 34: 44-47
        • Leuschner J
        • Muller J
        • Rudmann M
        Characterisation of the central nervous depressant activity of a commercially available valerian root extract.
        Arzneimittelforschung. 1993; 43: 638-641
        • Medina JH
        • Paladini AC
        • Wolfman C
        • Levi de Stein M
        • Calvo D
        • Diaz LE
        • Pena C
        Chrysin (5,7-di-OH-flavone), a naturally-occurring ligand for benzodiazepine receptors, with anticonvulsant properties.
        Biochem Pharmacol. 1990; 40: 2227-2231
        • Wolfman C
        • Viola H
        • Paladini A
        • Dajas F
        • Medina JH
        Possible anxiolytic effects of chrysin, a central benzodiazepine receptor ligand isolated from Passiflora coerulea.
        Pharmacol Biochem Behav. 1994; 47: 1-4
        • Soulimani R
        • Younos C
        • Jarmouni S
        • Bousta D
        • Misslin R
        • Mortier F
        Behavioural effects of Passiflora incarnata L. and its indole alkaloid and flavonoid derivatives and maltol in the mouse.
        J Ethnopharmacol. 1997; 57: 11-20
        • Medina JH
        • Viola H
        • Wolfman C
        • Marder M
        • Wasowski C
        • Calvo D
        • Paladini AC
        Overview—flavonoids: a new family of benzodiazepine receptor ligands.
        Neurochem Res. 1997; 22: 419-425
        • Viola H
        • Wasowski C
        • Levi de Stein M
        Apigenin, a component of Matricaria recutita flowers, is a central benzodiazepine receptors-ligand with anxiolytic effects.
        Planta Med. 1995; 61: 213-216
        • Avallone R
        • Zanoli P
        • Puia G
        • Kleinschnitz M
        • Schreier P
        • Baraldi M
        Pharmacological profile of apigenin, a flavonoid isolated from Matricaria chamomilla.
        Biochem Pharmacol. 2000; 59: 1387-1394
        • Kalix P
        The pharmacology of psychoactive alkaloids from ephedra and catha.
        J Ethnopharmacol. 1991; 32: 201-208
        • White LM
        • Gardner SF
        • Gurley BJ
        • Marx MA
        • Wang PL
        • Estes M
        Pharmacokinetics and cardiovascular effects of ma-huang (Ephedra sinica) in normotensive adults.
        J Clin Pharmacol. 1997; 37: 116-122
        • Haller CA
        • Benowitz NL
        Adverse cardiovascular and central nervous system events associated with dietary supplements containing ephedra alkaloids.
        N Engl J Med. 2000; 343: 1833-1838
        • Dhuna A
        • Pascual-Leone A
        • Langendorf F
        • Anderson DC
        Epileptogenic properties of cocaine in humans.
        Neurotoxicology. 1991; 12: 621-626
        • Rektor I
        Influence of parenterally administered amphetamine on the paroxysmal EEG activity in epileptics.
        Physiol Bohemoslov. 1984; 33: 43-48
        • Young R
        • Gabryszuk M
        • Glennon RA
        (−)Ephedrine and caffeine mutually potentiate one another's amphetamine-like stimulus effects.
        Pharmacol Biochem Behav. 1998; 61: 169-173
        • Snyder SH
        • Sklar P
        Behavioral and molecular actions of caffeine: focus on adenosine.
        J Psychiatr Res. 1984; 18: 91-106
        • Ault B
        • Olney MA
        • Joyner JL
        • Boyer CE
        • Notrica MA
        • Soroko FE
        • Wang CM
        Proconvulsant actions of theophylline and caffeine in the hippocampus: implications for the management of temporal lobe epilepsy.
        Brain Res. 1987; 426: 93-102
        • Frank C
        • Sagratella S
        • Benedetti M
        • Scotti de Carolis A
        Comparative influence of calcium blocker and purinergic drugs on epileptiform bursting in rat hippocampal slices.
        Brain Res. 1988; 441: 393-397
        • Tancredi V
        • D'Antuono M
        • Nehlig A
        • Avoli M
        Modulation of epileptiform activity by adenosine A1 receptor-mediated mechanisms in the juvenile rat hippocampus.
        J Pharmacol Exp Ther. 1998; 286: 1412-1419
        • Albertson TE
        • Joy RM
        • Stark LG
        Caffeine modification of kindled amygdaloid seizures.
        Pharmacol Biochem Behav. 1983; 19: 339-343
        • Coffey CE
        • Figiel GS
        • Weiner RD
        • Saunders WB
        Caffeine augmentation of ECT.
        Am J Psychiatry. 1990; 147: 579-585
        • Field B
        • Vadnal R
        Ginkgo biloba and memory: an overview.
        Nutr Neurosci. 1998; 1: 2565-2567
        • Oken BS
        • Storzbach DM
        • Kaye JA
        The efficacy of ginkgo biloba on cognitive function in Alzheimer disease.
        Arch Neurol. 1998; 55: 1409-1415
        • Subhan Z
        • Hindmarch I
        The psychopharmacological effects of ginkgo biloba extract in normal healthy volunteers.
        Int J Clin Pharmacol Res. 1984; 4: 89-93
        • Warot D
        • Lacomblez L
        • Danjou P
        • Weiller E
        • Payan C
        • Puech AJ
        [Comparative effects of Ginkgo biloba extracts on psychomotor performances and memory in healthy subjects].
        Therapie. 1991; 46: 33-36
        • Kristofikova Z
        • Benesova O
        • Tejkalova H
        Changes in high-affinity choline uptake in the hippocampus of old rats after long-term administration of two nootropic drugs (tacrine and ginkgo biloba extract).
        Dementia. 1992; 3: 304-307
        • Kristofikova Z
        • Klaschka J
        In vitro effect of ginkgo biloba extract (EGb 761) on the activity of presynaptic cholinergic nerve terminals in rat hippocampus.
        Dement Geriatr Cogn Disord. 1997; 8: 43-48
        • Taylor JE
        [Neuromediator binding to receptors in the rat brain: the effect of chronic administration of ginkgo biloba extract].
        Presse Med. 1986; 15: 1491-1493
        • Weichel O
        • Hilgert M
        • Chatterjee SS
        • Lehr M
        • Klein J
        Bilobalide, a constituent of ginkgo biloba, inhibits NMDA-induced phospholipase A2 activation and phospholipid breakdown in rat hippocampus.
        Naunyn Schmiedebergs Arch Pharmacol. 1999; 360: 609-615
        • Sasaki K
        • Wada K
        • Hatta S
        • Ohshika H
        • Haga M
        Bilobalide, a constituent of ginkgo biloba L., potentiates drug-metabolizing enzyme activities in mice: possible mechanism for anticonvulsant activity against 4-O-methylpyridoxine-induced convulsions.
        Res Commun Mol Pathol Pharmacol. 1997; 96: 45-56
        • Gregory PJ
        Seizure associated with Ginkgo biloba?.
        Ann Intern Med. 2001; 134: 344
        • Miwa H
        • Iijima M
        • Tanaka S
        • Mizuno Y
        Generalized convulsions after consuming a large amount of gingko nuts.
        Epilepsia. 2001; 42: 280-281
        • Itil TM
        • Eralp E
        • Ahmed I
        • Kunitz A
        • Itil KZ
        The pharmacological effects of Ginkgo biloba, a plant extract, on the brain of dementia patients in comparison with tacrine.
        Psychopharmacol Bull. 1998; 34: 391-397
        • Vogler BK
        • Pittler MH
        • Ernst E
        The efficacy of ginseng: a systematic review of randomised clinical trials.
        Eur J Clin Pharmacol. 1999; 55: 567-575
        • Attele AS
        • Wu JA
        • Yuan CS
        Ginseng pharmacology: multiple constituents and multiple actions.
        Biochem Pharmacol. 1999; 58: 1685-1693
        • Hiai S
        • Yokoyama H
        • Oura H
        • Yano S
        Stimulation of pituitary–adrenocortical system by ginseng saponin.
        Endocrinol Jpn. 1979; 26: 661-665
        • Zhang JT
        • Qu ZW
        • Liu Y
        • Deng HL
        Preliminary study on antiamnestic mechanism of ginsenoside Rg1 and Rb1.
        Chin Med J (Engl). 1990; 103: 932-938
        • Lee YJ
        • Chung E
        • Lee KY
        • Lee YH
        • Huh B
        • Lee SK
        Ginsenoside-Rg1, one of the major active molecules from Panax ginseng, is a functional ligand of glucocorticoid receptor.
        Mol Cell Endocrinol. 1997; 133: 135-140
        • Temkin NR
        • Davis GR
        Stress as a risk factor for seizures among adults with epilepsy.
        Epilepsia. 1984; 25: 450-456
        • Karst H
        • de Kloet ER
        • Joels M
        Episodic corticosterone treatment accelerates kindling epileptogenesis and triggers long-term changes in hippocampal CA1 cells, in the fully kindled state.
        Eur J Neurosci. 1999; 11: 889-898
        • Roberts AJ
        • Crabbe JC
        • Keith LD
        Type I corticosteroid receptors modulate PTZ-induced convulsions of withdrawal seizure prone mice.
        Brain Res. 1993; 626: 143-148
        • Linde K
        • Ramirez G
        • Mulrow CD
        • Pauls A
        • Weidenhammer W
        • Melchart D
        St John's wort for depression—an overview and meta-analysis of randomised clinical trials.
        Br Med J. 1996; 313: 253-258
        • Kim HL
        • Streltzer J
        • Goebert D
        St. John's wort for depression: a meta analysis of well-defined clinical trials.
        J Nerv Ment Dis. 1999; 187: 532-538
        • Linde K
        • Mulrow CD
        St John's wort for depression.
        Cochrane Database Syst Rev. 2000;
        • Shelton RC
        • Keller MB
        • Gelenberg A
        Effectiveness of St John's wort in major depression: a randomized controlled trial.
        JAMA. 2001; 285: 1978-1986
        • Schrader E
        Equivalence of St John's wort extract (Ze 117) and fluoxetine: a randomized, controlled study in mild–moderate depression.
        Int Clin Psychopharmacol. 2000; 2: 61-68
        • Volz HP
        • Laux P
        Potential treatment for subthreshold and mild depression: a comparison of St. John's wort extracts and fluoxetine.
        Compr Psychiatry. 2000; 41: S133-137
        • Harrer G
        • Schmidt U
        • Kuhn U
        • Biller A
        Comparison of equivalence between the St. John's wort extract LoHyp-57 and fluoxetine.
        Arzneimittelforschung. 1999; 49: 289-296
        • Brenner R
        • Azbel V
        • Madhusoodanan S
        • Pawlowska M
        Comparison of an extract of hypericum (LI 160) and sertraline in the treatment of depression: a double-blind, randomized pilot study.
        Clin Ther. 2000; 22: 411-419
        • Bennett DA
        • Phun L
        • Polk JF
        • Voglino SA
        • Zlotnik V
        • Raffa RB
        Neuropharmacology of St. John's Wort (Hypericum).
        Ann Pharmacother. 1998; 32: 1201-1208
        • Singer A
        • Wonnemann M
        • Müller WE
        Hyperforin, a major antidepressant constituent of St. John's Wort, inhibits serotonin uptake by elevating free intracellular Na+1.
        J Pharmacol Exp Ther. 1999; 290: 1363-1368
        • Nathan PJ
        Hypericum perforatum (St John's Wort): a non-selective reuptake inhibitor? A review of the recent advances in its pharmacology.
        J Psychopharmacol. 2001; 15: 47-54
        • Cott JM
        In vitro receptor binding and enzyme inhibition by Hypericum perforatum extract.
        Pharmacopsychiatry. 1997; 30: 108-112
        • Moore LB
        • Goodwin B
        • Jones SA
        St. John's wort induces hepatic drug metabolism through activation of the pregnane X receptor.
        Proc Natl Acad Sci USA. 2000; 97: 7500-7502
        • Nebel A
        • Schneider BJ
        • Baker RK
        • Kroll DJ
        Potential metabolic interaction between St. John's wort and theophylline.
        Ann Pharmacother. 1999; 33: 502
        • Ruschitzka F
        • Meier PJ
        • Turina M
        • Luscher TF
        • Noll G
        Acute heart transplant rejection due to Saint John's wort.
        Lancet. 2000; 355: 548-549
        • Johne A
        • Brockmoller J
        • Bauer S
        • Maurer A
        • Langheinrich M
        • Roots I
        Pharmacokinetic interaction of digoxin with an herbal extract from St John's wort (Hypericum perforatum).
        Clin Pharmacol Ther. 1999; 66: 338-345
        • Yue QY
        • Bergquist C
        • Gerden B
        Safety of St John's wort (Hypericum perforatum).
        Lancet. 2000; 355: 576-577
        • Miller JL
        Interaction between indinavir and St. John's wort reported.
        Am J Health Syst Pharm. 2000; 57: 625-626
        • Burstein AH
        • Horton RL
        • Dunn T
        • Alfaro RM
        • Piscitelli SC
        • Theodore W
        Lack of effect of St John's Wort on carbamazepine pharmacokinetics in healthy volunteers.
        Clin Pharmacol Ther. 2000; 68: 605-612
        • Burkhard PR
        • Burkhardt K
        • Haenggeli CA
        • Landis T
        Plant-induced seizures: reappearance of an old problem.
        J Neurol. 1999; 246: 667-670
        • Bendich A
        The potential for dietary supplements to reduce premenstrual syndrome (PMS) symptoms.
        J Am Coll Nutr. 2000; 19: 3-12
        • Miller LG
        Herbal medicinals: selected clinical considerations focusing on known or potential drug–herb interactions.
        Arch Intern Med. 1998; 158: 2200-2211
        • Voskuyl RA
        • Vreugdenhil M
        • Kang JX
        • Leaf A
        Anticonvulsant effect of polyunsaturated fatty acids in rats, using the cortical stimulation model.
        Eur J Pharmacol. 1998; 341: 145-152
        • Yehuda S
        • Carasso RL
        • Mostofsky DI
        Essential fatty acid preparation (SR-3) raises the seizure threshold in rats.
        Eur J Pharmacol. 1994; 254: 193-198
        • Alldredge BK
        Seizure risk associated with psychotropic drugs: clinical and pharmacokinetic considerations.
        Neurology. 1999; 53: S68-75
      1. Dietary Supplement Health and Education Act of 1994, 1994; Pub L No. 103–417.